2021-11-09 15:50:53 +01:00
<!doctype html>
< html >
< head >
< meta charset = "utf-8" / >
< meta name = "viewport" content = "width=device-width, initial-scale=1.0" / >
< title > Index — QuaPy 0.1.6 documentation< / title >
< link rel = "stylesheet" type = "text/css" href = "_static/pygments.css" / >
< link rel = "stylesheet" type = "text/css" href = "_static/bizstyle.css" / >
< script data-url_root = "./" id = "documentation_options" src = "_static/documentation_options.js" > < / script >
< script src = "_static/jquery.js" > < / script >
< script src = "_static/underscore.js" > < / script >
< script src = "_static/doctools.js" > < / script >
< script src = "_static/bizstyle.js" > < / script >
< link rel = "index" title = "Index" href = "#" / >
< link rel = "search" title = "Search" href = "search.html" / >
< meta name = "viewport" content = "width=device-width,initial-scale=1.0" / >
<!-- [if lt IE 9]>
< script src = "_static/css3-mediaqueries.js" > < / script >
<![endif]-->
< / head > < body >
< div class = "related" role = "navigation" aria-label = "related navigation" >
< h3 > Navigation< / h3 >
< ul >
< li class = "right" style = "margin-right: 10px" >
< a href = "#" title = "General Index"
accesskey="I">index< / a > < / li >
< li class = "right" >
< a href = "py-modindex.html" title = "Python Module Index"
>modules< / a > |< / li >
< li class = "nav-item nav-item-0" > < a href = "index.html" > QuaPy 0.1.6 documentation< / a > » < / li >
< li class = "nav-item nav-item-this" > < a href = "" > Index< / a > < / li >
< / ul >
< / div >
< div class = "document" >
< div class = "documentwrapper" >
< div class = "bodywrapper" >
< div class = "body" role = "main" >
< h1 id = "index" > Index< / h1 >
< div class = "genindex-jumpbox" >
< a href = "#A" > < strong > A< / strong > < / a >
| < a href = "#B" > < strong > B< / strong > < / a >
| < a href = "#C" > < strong > C< / strong > < / a >
| < a href = "#D" > < strong > D< / strong > < / a >
| < a href = "#E" > < strong > E< / strong > < / a >
| < a href = "#F" > < strong > F< / strong > < / a >
| < a href = "#G" > < strong > G< / strong > < / a >
| < a href = "#H" > < strong > H< / strong > < / a >
| < a href = "#I" > < strong > I< / strong > < / a >
| < a href = "#K" > < strong > K< / strong > < / a >
| < a href = "#L" > < strong > L< / strong > < / a >
| < a href = "#M" > < strong > M< / strong > < / a >
| < a href = "#N" > < strong > N< / strong > < / a >
| < a href = "#O" > < strong > O< / strong > < / a >
| < a href = "#P" > < strong > P< / strong > < / a >
| < a href = "#Q" > < strong > Q< / strong > < / a >
| < a href = "#R" > < strong > R< / strong > < / a >
| < a href = "#S" > < strong > S< / strong > < / a >
| < a href = "#T" > < strong > T< / strong > < / a >
| < a href = "#U" > < strong > U< / strong > < / a >
| < a href = "#V" > < strong > V< / strong > < / a >
| < a href = "#W" > < strong > W< / strong > < / a >
| < a href = "#X" > < strong > X< / strong > < / a >
< / div >
< h2 id = "A" > A< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.html#quapy.error.absolute_error" > absolute_error() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ACC" > ACC (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.acc_error" > acc_error() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.acce" > acce() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.accuracy_policy" > accuracy_policy() (quapy.method.meta.Ensemble method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.preprocessing.IndexTransformer.add_word" > add_word() (quapy.data.preprocessing.IndexTransformer method)< / a >
< / li >
< li > < a href = "quapy.html#quapy.functional.adjusted_quantification" > adjusted_quantification() (in module quapy.functional)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AdjustedClassifyAndCount" > AdjustedClassifyAndCount (in module quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.ae" > ae() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ACC.aggregate" > aggregate() (quapy.method.aggregative.ACC method)< / a >
< ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.aggregate" > (quapy.method.aggregative.AggregativeQuantifier method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.CC.aggregate" > (quapy.method.aggregative.CC method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ELM.aggregate" > (quapy.method.aggregative.ELM method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.EMQ.aggregate" > (quapy.method.aggregative.EMQ method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.HDy.aggregate" > (quapy.method.aggregative.HDy method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.OneVsAll.aggregate" > (quapy.method.aggregative.OneVsAll method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.PACC.aggregate" > (quapy.method.aggregative.PACC method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.PCC.aggregate" > (quapy.method.aggregative.PCC method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ThresholdOptimization.aggregate" > (quapy.method.aggregative.ThresholdOptimization method)< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.aggregative" > aggregative (quapy.method.aggregative.AggregativeQuantifier property)< / a >
< ul >
< li > < a href = "quapy.method.html#quapy.method.base.BaseQuantifier.aggregative" > (quapy.method.base.BaseQuantifier property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.aggregative" > (quapy.method.meta.Ensemble property)< / a >
< / li >
< / ul > < / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeProbabilisticQuantifier" > AggregativeProbabilisticQuantifier (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeQuantifier" > AggregativeQuantifier (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.html#quapy.evaluation.artificial_prevalence_prediction" > artificial_prevalence_prediction() (in module quapy.evaluation)< / a >
< / li >
< li > < a href = "quapy.html#quapy.evaluation.artificial_prevalence_protocol" > artificial_prevalence_protocol() (in module quapy.evaluation)< / a >
< / li >
< li > < a href = "quapy.html#quapy.evaluation.artificial_prevalence_report" > artificial_prevalence_report() (in module quapy.evaluation)< / a >
< / li >
< li > < a href = "quapy.html#quapy.functional.artificial_prevalence_sampling" > artificial_prevalence_sampling() (in module quapy.functional)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.artificial_sampling_generator" > artificial_sampling_generator() (quapy.data.base.LabelledCollection method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.artificial_sampling_index_generator" > artificial_sampling_index_generator() (quapy.data.base.LabelledCollection method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.TorchDataset.asDataloader" > asDataloader() (quapy.classification.neural.TorchDataset method)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "B" > B< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.base.BaseQuantifier" > BaseQuantifier (class in quapy.method.base)< / a >
< / li >
< li > < a href = "quapy.html#quapy.model_selection.GridSearchQ.best_model" > best_model() (quapy.model_selection.GridSearchQ method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.reader.binarize" > binarize() (in module quapy.data.reader)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.Dataset.binary" > binary (quapy.data.base.Dataset property)< / a >
< ul >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.binary" > (quapy.data.base.LabelledCollection property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.OneVsAll.binary" > (quapy.method.aggregative.OneVsAll property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.base.BaseQuantifier.binary" > (quapy.method.base.BaseQuantifier property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.base.BinaryQuantifier.binary" > (quapy.method.base.BinaryQuantifier property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.binary" > (quapy.method.meta.Ensemble property)< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.html#quapy.plot.binary_bias_bins" > binary_bias_bins() (in module quapy.plot)< / a >
< / li >
< li > < a href = "quapy.html#quapy.plot.binary_bias_global" > binary_bias_global() (in module quapy.plot)< / a >
< / li >
< li > < a href = "quapy.html#quapy.plot.binary_diagonal" > binary_diagonal() (in module quapy.plot)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.base.BinaryQuantifier" > BinaryQuantifier (class in quapy.method.base)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "C" > C< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.CC" > CC (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.Dataset.classes_" > classes_ (quapy.data.base.Dataset property)< / a >
< ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.classes_" > (quapy.method.aggregative.AggregativeQuantifier property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.OneVsAll.classes_" > (quapy.method.aggregative.OneVsAll property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.base.BaseQuantifier.classes_" > (quapy.method.base.BaseQuantifier property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.classes_" > (quapy.method.meta.Ensemble property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetTrainer.classes_" > (quapy.method.neural.QuaNetTrainer property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.classes_" > (quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation property)< / a >
< / li >
< li > < a href = "quapy.html#quapy.model_selection.GridSearchQ.classes_" > (quapy.model_selection.GridSearchQ property)< / a >
< / li >
< / ul > < / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ACC.classify" > classify() (quapy.method.aggregative.ACC method)< / a >
< ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.classify" > (quapy.method.aggregative.AggregativeQuantifier method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ELM.classify" > (quapy.method.aggregative.ELM method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.OneVsAll.classify" > (quapy.method.aggregative.OneVsAll method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.PACC.classify" > (quapy.method.aggregative.PACC method)< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ClassifyAndCount" > ClassifyAndCount (in module quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetTrainer.clean_checkpoint" > clean_checkpoint() (quapy.method.neural.QuaNetTrainer method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetTrainer.clean_checkpoint_dir" > clean_checkpoint_dir() (quapy.method.neural.QuaNetTrainer method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.CNNnet" > CNNnet (class in quapy.classification.neural)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ThresholdOptimization.compute_fpr" > compute_fpr() (quapy.method.aggregative.ThresholdOptimization method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ThresholdOptimization.compute_table" > compute_table() (quapy.method.aggregative.ThresholdOptimization method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ThresholdOptimization.compute_tpr" > compute_tpr() (quapy.method.aggregative.ThresholdOptimization method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.counts" > counts() (quapy.data.base.LabelledCollection method)< / a >
< / li >
< li > < a href = "quapy.html#quapy.util.create_if_not_exist" > create_if_not_exist() (in module quapy.util)< / a >
< / li >
< li > < a href = "quapy.html#quapy.util.create_parent_dir" > create_parent_dir() (in module quapy.util)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "D" > D< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.base.Dataset" > Dataset (class in quapy.data.base)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.svmperf.SVMperf.decision_function" > decision_function() (quapy.classification.svmperf.SVMperf method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.device" > device (quapy.classification.neural.NeuralClassifierTrainer property)< / a >
< ul >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetModule.device" > (quapy.method.neural.QuaNetModule property)< / a >
< / li >
< / ul > < / li >
< li > < a href = "quapy.data.html#quapy.data.datasets.df_replace" > df_replace() (in module quapy.data.datasets)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.TextClassifierNet.dimensions" > dimensions() (quapy.classification.neural.TextClassifierNet method)< / a >
< / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.classification.html#quapy.classification.neural.CNNnet.document_embedding" > document_embedding() (quapy.classification.neural.CNNnet method)< / a >
< ul >
< li > < a href = "quapy.classification.html#quapy.classification.neural.LSTMnet.document_embedding" > (quapy.classification.neural.LSTMnet method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.TextClassifierNet.document_embedding" > (quapy.classification.neural.TextClassifierNet method)< / a >
< / li >
< / ul > < / li >
< li > < a href = "quapy.html#quapy.util.download_file" > download_file() (in module quapy.util)< / a >
< / li >
< li > < a href = "quapy.html#quapy.util.download_file_if_not_exists" > download_file_if_not_exists() (in module quapy.util)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.ds_policy" > ds_policy() (quapy.method.meta.Ensemble method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.ds_policy_get_posteriors" > ds_policy_get_posteriors() (quapy.method.meta.Ensemble method)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "E" > E< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.meta.EACC" > EACC() (in module quapy.method.meta)< / a >
< / li >
< li > < a href = "quapy.html#quapy.util.EarlyStop" > EarlyStop (class in quapy.util)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.ECC" > ECC() (in module quapy.method.meta)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.EEMQ" > EEMQ() (in module quapy.method.meta)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.EHDy" > EHDy() (in module quapy.method.meta)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ELM" > ELM (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.EMQ.EM" > EM() (quapy.method.aggregative.EMQ class method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.EMQ" > EMQ (class in quapy.method.aggregative)< / a >
< / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble" > Ensemble (class in quapy.method.meta)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.ensembleFactory" > ensembleFactory() (in module quapy.method.meta)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.EPACC" > EPACC() (in module quapy.method.meta)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetTrainer.epoch" > epoch() (quapy.method.neural.QuaNetTrainer method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.EMQ.EPSILON" > EPSILON (quapy.method.aggregative.EMQ attribute)< / a >
< / li >
< li > < a href = "quapy.html#quapy.plot.error_by_drift" > error_by_drift() (in module quapy.plot)< / a >
< / li >
< li > < a href = "quapy.html#quapy.evaluation.evaluate" > evaluate() (in module quapy.evaluation)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ExpectationMaximizationQuantifier" > ExpectationMaximizationQuantifier (in module quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ExplicitLossMinimisation" > ExplicitLossMinimisation (in module quapy.method.aggregative)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "F" > F< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.html#quapy.error.f1_error" > f1_error() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.f1e" > f1e() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.datasets.fetch_reviews" > fetch_reviews() (in module quapy.data.datasets)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.datasets.fetch_twitter" > fetch_twitter() (in module quapy.data.datasets)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.datasets.fetch_UCIDataset" > fetch_UCIDataset() (in module quapy.data.datasets)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.datasets.fetch_UCILabelledCollection" > fetch_UCILabelledCollection() (in module quapy.data.datasets)< / a >
< / li >
2021-11-12 14:30:02 +01:00
< li > < a href = "quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.fit" > fit() (quapy.classification.methods.LowRankLogisticRegression method)< / a >
2021-11-09 15:50:53 +01:00
< ul >
< li > < a href = "quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.fit" > (quapy.classification.neural.NeuralClassifierTrainer method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.svmperf.SVMperf.fit" > (quapy.classification.svmperf.SVMperf method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.preprocessing.IndexTransformer.fit" > (quapy.data.preprocessing.IndexTransformer method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ACC.fit" > (quapy.method.aggregative.ACC method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.fit" > (quapy.method.aggregative.AggregativeQuantifier method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.CC.fit" > (quapy.method.aggregative.CC method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ELM.fit" > (quapy.method.aggregative.ELM method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.EMQ.fit" > (quapy.method.aggregative.EMQ method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.HDy.fit" > (quapy.method.aggregative.HDy method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.OneVsAll.fit" > (quapy.method.aggregative.OneVsAll method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.PACC.fit" > (quapy.method.aggregative.PACC method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.PCC.fit" > (quapy.method.aggregative.PCC method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ThresholdOptimization.fit" > (quapy.method.aggregative.ThresholdOptimization method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.base.BaseQuantifier.fit" > (quapy.method.base.BaseQuantifier method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.fit" > (quapy.method.meta.Ensemble method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetTrainer.fit" > (quapy.method.neural.QuaNetTrainer method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.fit" > (quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation method)< / a >
< / li >
< li > < a href = "quapy.html#quapy.model_selection.GridSearchQ.fit" > (quapy.model_selection.GridSearchQ method)< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.preprocessing.IndexTransformer.fit_transform" > fit_transform() (quapy.data.preprocessing.IndexTransformer method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.TextClassifierNet.forward" > forward() (quapy.classification.neural.TextClassifierNet method)< / a >
< ul >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetModule.forward" > (quapy.method.neural.QuaNetModule method)< / a >
< / li >
< / ul > < / li >
< li > < a href = "quapy.data.html#quapy.data.reader.from_csv" > from_csv() (in module quapy.data.reader)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.from_name" > from_name() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.reader.from_sparse" > from_sparse() (in module quapy.data.reader)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.reader.from_text" > from_text() (in module quapy.data.reader)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "G" > G< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.html#quapy.evaluation.gen_prevalence_prediction" > gen_prevalence_prediction() (in module quapy.evaluation)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetTrainer.get_aggregative_estims" > get_aggregative_estims() (quapy.method.neural.QuaNetTrainer method)< / a >
< / li >
< li > < a href = "quapy.html#quapy.functional.get_nprevpoints_approximation" > get_nprevpoints_approximation() (in module quapy.functional)< / a >
< / li >
2021-11-12 14:30:02 +01:00
< li > < a href = "quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.get_params" > get_params() (quapy.classification.methods.LowRankLogisticRegression method)< / a >
2021-11-09 15:50:53 +01:00
< ul >
< li > < a href = "quapy.classification.html#quapy.classification.neural.CNNnet.get_params" > (quapy.classification.neural.CNNnet method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.LSTMnet.get_params" > (quapy.classification.neural.LSTMnet method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.get_params" > (quapy.classification.neural.NeuralClassifierTrainer method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.TextClassifierNet.get_params" > (quapy.classification.neural.TextClassifierNet method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.get_params" > (quapy.method.aggregative.AggregativeQuantifier method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.OneVsAll.get_params" > (quapy.method.aggregative.OneVsAll method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.base.BaseQuantifier.get_params" > (quapy.method.base.BaseQuantifier method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.get_params" > (quapy.method.meta.Ensemble method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetTrainer.get_params" > (quapy.method.neural.QuaNetTrainer method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.get_params" > (quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation method)< / a >
< / li >
< li > < a href = "quapy.html#quapy.model_selection.GridSearchQ.get_params" > (quapy.model_selection.GridSearchQ method)< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.meta.get_probability_distribution" > get_probability_distribution() (in module quapy.method.meta)< / a >
< / li >
< li > < a href = "quapy.html#quapy.util.get_quapy_home" > get_quapy_home() (in module quapy.util)< / a >
< / li >
< li > < a href = "quapy.html#quapy.model_selection.GridSearchQ" > GridSearchQ (class in quapy.model_selection)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "H" > H< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.HDy" > HDy (class in quapy.method.aggregative)< / a >
< / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.html#quapy.functional.HellingerDistance" > HellingerDistance() (in module quapy.functional)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.HellingerDistanceY" > HellingerDistanceY (in module quapy.method.aggregative)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "I" > I< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.preprocessing.index" > index() (in module quapy.data.preprocessing)< / a >
< ul >
< li > < a href = "quapy.data.html#quapy.data.preprocessing.IndexTransformer.index" > (quapy.data.preprocessing.IndexTransformer method)< / a >
< / li >
< / ul > < / li >
< li > < a href = "quapy.data.html#quapy.data.preprocessing.IndexTransformer" > IndexTransformer (class in quapy.data.preprocessing)< / a >
< / li >
2021-11-12 14:30:02 +01:00
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetModule.init_hidden" > init_hidden() (quapy.method.neural.QuaNetModule method)< / a >
2021-11-09 15:50:53 +01:00
< / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.base.isaggregative" > isaggregative() (in module quapy.method.base)< / a >
< / li >
< li > < a href = "quapy.html#quapy.isbinary" > isbinary() (in module quapy)< / a >
< ul >
< li > < a href = "quapy.data.html#quapy.data.base.isbinary" > (in module quapy.data.base)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.base.isbinary" > (in module quapy.method.base)< / a >
< / li >
< / ul > < / li >
< li > < a href = "quapy.method.html#quapy.method.base.isprobabilistic" > isprobabilistic() (in module quapy.method.base)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "K" > K< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.base.Dataset.kFCV" > kFCV() (quapy.data.base.Dataset class method)< / a >
< ul >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.kFCV" > (quapy.data.base.LabelledCollection method)< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.html#quapy.error.kld" > kld() (in module quapy.error)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "L" > L< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection" > LabelledCollection (class in quapy.data.base)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.learner" > learner (quapy.method.aggregative.AggregativeQuantifier property)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.Dataset.load" > load() (quapy.data.base.Dataset class method)< / a >
< ul >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.load" > (quapy.data.base.LabelledCollection class method)< / a >
< / li >
< / ul > < / li >
2021-11-12 14:30:02 +01:00
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression" > LowRankLogisticRegression (class in quapy.classification.methods)< / a >
< / li >
2021-11-09 15:50:53 +01:00
< li > < a href = "quapy.classification.html#quapy.classification.neural.LSTMnet" > LSTMnet (class in quapy.classification.neural)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "M" > M< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.html#quapy.error.mae" > mae() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.neural.mae_loss" > mae_loss() (in module quapy.method.neural)< / a >
< / li >
< li > < a href = "quapy.html#quapy.util.map_parallel" > map_parallel() (in module quapy.util)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.MAX" > MAX (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.EMQ.MAX_ITER" > MAX_ITER (quapy.method.aggregative.EMQ attribute)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation" > MaximumLikelihoodPrevalenceEstimation (class in quapy.method.non_aggregative)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.mean_absolute_error" > mean_absolute_error() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.mean_relative_absolute_error" > mean_relative_absolute_error() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.MedianSweep" > MedianSweep (in module quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.MedianSweep2" > MedianSweep2 (in module quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.mkld" > mkld() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.mnkld" > mnkld() (in module quapy.error)< / a >
< / li >
< li >
module
< ul >
< li > < a href = "quapy.html#module-quapy" > quapy< / a >
< / li >
< li > < a href = "quapy.classification.html#module-quapy.classification" > quapy.classification< / a >
< / li >
< li > < a href = "quapy.classification.html#module-quapy.classification.methods" > quapy.classification.methods< / a >
< / li >
< li > < a href = "quapy.classification.html#module-quapy.classification.neural" > quapy.classification.neural< / a >
< / li >
< li > < a href = "quapy.classification.html#module-quapy.classification.svmperf" > quapy.classification.svmperf< / a >
< / li >
< li > < a href = "quapy.data.html#module-quapy.data" > quapy.data< / a >
< / li >
< li > < a href = "quapy.data.html#module-quapy.data.base" > quapy.data.base< / a >
< / li >
< li > < a href = "quapy.data.html#module-quapy.data.datasets" > quapy.data.datasets< / a >
< / li >
< li > < a href = "quapy.data.html#module-quapy.data.preprocessing" > quapy.data.preprocessing< / a >
< / li >
< li > < a href = "quapy.data.html#module-quapy.data.reader" > quapy.data.reader< / a >
< / li >
< li > < a href = "quapy.html#module-quapy.error" > quapy.error< / a >
< / li >
< li > < a href = "quapy.html#module-quapy.evaluation" > quapy.evaluation< / a >
< / li >
< li > < a href = "quapy.html#module-quapy.functional" > quapy.functional< / a >
< / li >
< li > < a href = "quapy.method.html#module-quapy.method" > quapy.method< / a >
< / li >
< li > < a href = "quapy.method.html#module-quapy.method.aggregative" > quapy.method.aggregative< / a >
< / li >
< li > < a href = "quapy.method.html#module-quapy.method.base" > quapy.method.base< / a >
< / li >
< li > < a href = "quapy.method.html#module-quapy.method.meta" > quapy.method.meta< / a >
< / li >
< li > < a href = "quapy.method.html#module-quapy.method.neural" > quapy.method.neural< / a >
< / li >
< li > < a href = "quapy.method.html#module-quapy.method.non_aggregative" > quapy.method.non_aggregative< / a >
< / li >
< li > < a href = "quapy.html#module-quapy.model_selection" > quapy.model_selection< / a >
< / li >
< li > < a href = "quapy.html#module-quapy.plot" > quapy.plot< / a >
< / li >
< li > < a href = "quapy.html#module-quapy.util" > quapy.util< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.html#quapy.error.mrae" > mrae() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.MS" > MS (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.MS2" > MS2 (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.mse" > mse() (in module quapy.error)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "N" > N< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.base.Dataset.n_classes" > n_classes (quapy.data.base.Dataset property)< / a >
< ul >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.n_classes" > (quapy.data.base.LabelledCollection property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.n_classes" > (quapy.method.aggregative.AggregativeQuantifier property)< / a >
< / li >
< / ul > < / li >
< li > < a href = "quapy.html#quapy.evaluation.natural_prevalence_prediction" > natural_prevalence_prediction() (in module quapy.evaluation)< / a >
< / li >
< li > < a href = "quapy.html#quapy.evaluation.natural_prevalence_protocol" > natural_prevalence_protocol() (in module quapy.evaluation)< / a >
< / li >
< li > < a href = "quapy.html#quapy.evaluation.natural_prevalence_report" > natural_prevalence_report() (in module quapy.evaluation)< / a >
< / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.natural_sampling_generator" > natural_sampling_generator() (quapy.data.base.LabelledCollection method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.natural_sampling_index_generator" > natural_sampling_index_generator() (quapy.data.base.LabelledCollection method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer" > NeuralClassifierTrainer (class in quapy.classification.neural)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.nkld" > nkld() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.html#quapy.functional.normalize_prevalence" > normalize_prevalence() (in module quapy.functional)< / a >
< / li >
< li > < a href = "quapy.html#quapy.functional.num_prevalence_combinations" > num_prevalence_combinations() (in module quapy.functional)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "O" > O< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.OneVsAll" > OneVsAll (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.MS.optimize_threshold" > optimize_threshold() (quapy.method.aggregative.MS method)< / a >
< ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.MS2.optimize_threshold" > (quapy.method.aggregative.MS2 method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ThresholdOptimization.optimize_threshold" > (quapy.method.aggregative.ThresholdOptimization method)< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "P" > P< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.PACC" > PACC (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.html#quapy.util.parallel" > parallel() (in module quapy.util)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.PCC" > PCC (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.html#quapy.util.pickled_resource" > pickled_resource() (in module quapy.util)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeProbabilisticQuantifier.posterior_probabilities" > posterior_probabilities() (quapy.method.aggregative.AggregativeProbabilisticQuantifier method)< / a >
< ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.OneVsAll.posterior_probabilities" > (quapy.method.aggregative.OneVsAll method)< / a >
< / li >
< / ul > < / li >
2021-11-12 14:30:02 +01:00
< li > < a href = "quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.predict" > predict() (quapy.classification.methods.LowRankLogisticRegression method)< / a >
2021-11-09 15:50:53 +01:00
< ul >
< li > < a href = "quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.predict" > (quapy.classification.neural.NeuralClassifierTrainer method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.svmperf.SVMperf.predict" > (quapy.classification.svmperf.SVMperf method)< / a >
< / li >
< / ul > < / li >
2021-11-12 14:30:02 +01:00
< li > < a href = "quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.predict_proba" > predict_proba() (quapy.classification.methods.LowRankLogisticRegression method)< / a >
2021-11-09 15:50:53 +01:00
< ul >
< li > < a href = "quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.predict_proba" > (quapy.classification.neural.NeuralClassifierTrainer method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.TextClassifierNet.predict_proba" > (quapy.classification.neural.TextClassifierNet method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeProbabilisticQuantifier.predict_proba" > (quapy.method.aggregative.AggregativeProbabilisticQuantifier method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.EMQ.predict_proba" > (quapy.method.aggregative.EMQ method)< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.prevalence" > prevalence() (quapy.data.base.LabelledCollection method)< / a >
< / li >
< li > < a href = "quapy.html#quapy.functional.prevalence_from_labels" > prevalence_from_labels() (in module quapy.functional)< / a >
< / li >
< li > < a href = "quapy.html#quapy.functional.prevalence_from_probabilities" > prevalence_from_probabilities() (in module quapy.functional)< / a >
< / li >
< li > < a href = "quapy.html#quapy.functional.prevalence_linspace" > prevalence_linspace() (in module quapy.functional)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeProbabilisticQuantifier.probabilistic" > probabilistic (quapy.method.aggregative.AggregativeProbabilisticQuantifier property)< / a >
< ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.OneVsAll.probabilistic" > (quapy.method.aggregative.OneVsAll property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.base.BaseQuantifier.probabilistic" > (quapy.method.base.BaseQuantifier property)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.probabilistic" > (quapy.method.meta.Ensemble property)< / a >
< / li >
< / ul > < / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ProbabilisticAdjustedClassifyAndCount" > ProbabilisticAdjustedClassifyAndCount (in module quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ProbabilisticClassifyAndCount" > ProbabilisticClassifyAndCount (in module quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.ptr_policy" > ptr_policy() (quapy.method.meta.Ensemble method)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "Q" > Q< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetModule" > QuaNetModule (class in quapy.method.neural)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetTrainer" > QuaNetTrainer (class in quapy.method.neural)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeProbabilisticQuantifier.quantify" > quantify() (quapy.method.aggregative.AggregativeProbabilisticQuantifier method)< / a >
< ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.quantify" > (quapy.method.aggregative.AggregativeQuantifier method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.OneVsAll.quantify" > (quapy.method.aggregative.OneVsAll method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.base.BaseQuantifier.quantify" > (quapy.method.base.BaseQuantifier method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.quantify" > (quapy.method.meta.Ensemble method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetTrainer.quantify" > (quapy.method.neural.QuaNetTrainer method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.quantify" > (quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation method)< / a >
< / li >
< li > < a href = "quapy.html#quapy.model_selection.GridSearchQ.quantify" > (quapy.model_selection.GridSearchQ method)< / a >
< / li >
< / ul > < / li >
< li >
quapy
< ul >
< li > < a href = "quapy.html#module-quapy" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.classification
< ul >
< li > < a href = "quapy.classification.html#module-quapy.classification" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.classification.methods
< ul >
< li > < a href = "quapy.classification.html#module-quapy.classification.methods" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.classification.neural
< ul >
< li > < a href = "quapy.classification.html#module-quapy.classification.neural" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.classification.svmperf
< ul >
< li > < a href = "quapy.classification.html#module-quapy.classification.svmperf" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.data
< ul >
< li > < a href = "quapy.data.html#module-quapy.data" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.data.base
< ul >
< li > < a href = "quapy.data.html#module-quapy.data.base" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.data.datasets
< ul >
< li > < a href = "quapy.data.html#module-quapy.data.datasets" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.data.preprocessing
< ul >
< li > < a href = "quapy.data.html#module-quapy.data.preprocessing" > module< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li >
quapy.data.reader
< ul >
< li > < a href = "quapy.data.html#module-quapy.data.reader" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.error
< ul >
< li > < a href = "quapy.html#module-quapy.error" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.evaluation
< ul >
< li > < a href = "quapy.html#module-quapy.evaluation" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.functional
< ul >
< li > < a href = "quapy.html#module-quapy.functional" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.method
< ul >
< li > < a href = "quapy.method.html#module-quapy.method" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.method.aggregative
< ul >
< li > < a href = "quapy.method.html#module-quapy.method.aggregative" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.method.base
< ul >
< li > < a href = "quapy.method.html#module-quapy.method.base" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.method.meta
< ul >
< li > < a href = "quapy.method.html#module-quapy.method.meta" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.method.neural
< ul >
< li > < a href = "quapy.method.html#module-quapy.method.neural" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.method.non_aggregative
< ul >
< li > < a href = "quapy.method.html#module-quapy.method.non_aggregative" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.model_selection
< ul >
< li > < a href = "quapy.html#module-quapy.model_selection" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.plot
< ul >
< li > < a href = "quapy.html#module-quapy.plot" > module< / a >
< / li >
< / ul > < / li >
< li >
quapy.util
< ul >
< li > < a href = "quapy.html#module-quapy.util" > module< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "R" > R< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.html#quapy.error.rae" > rae() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.preprocessing.reduce_columns" > reduce_columns() (in module quapy.data.preprocessing)< / a >
< / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.reader.reindex_labels" > reindex_labels() (in module quapy.data.reader)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.relative_absolute_error" > relative_absolute_error() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.reset_net_params" > reset_net_params() (quapy.classification.neural.NeuralClassifierTrainer method)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "S" > S< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.sampling" > sampling() (quapy.data.base.LabelledCollection method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.sampling_from_index" > sampling_from_index() (quapy.data.base.LabelledCollection method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.sampling_index" > sampling_index() (quapy.data.base.LabelledCollection method)< / a >
< / li >
< li > < a href = "quapy.html#quapy.plot.save_or_show" > save_or_show() (in module quapy.plot)< / a >
< / li >
< li > < a href = "quapy.html#quapy.util.save_text_file" > save_text_file() (in module quapy.util)< / a >
< / li >
< li > < a href = "quapy.html#quapy.error.se" > se() (in module quapy.error)< / a >
< / li >
2021-11-12 14:30:02 +01:00
< li > < a href = "quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.set_params" > set_params() (quapy.classification.methods.LowRankLogisticRegression method)< / a >
2021-11-09 15:50:53 +01:00
< ul >
< li > < a href = "quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.set_params" > (quapy.classification.neural.NeuralClassifierTrainer method)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.svmperf.SVMperf.set_params" > (quapy.classification.svmperf.SVMperf method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeProbabilisticQuantifier.set_params" > (quapy.method.aggregative.AggregativeProbabilisticQuantifier method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.set_params" > (quapy.method.aggregative.AggregativeQuantifier method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.OneVsAll.set_params" > (quapy.method.aggregative.OneVsAll method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.base.BaseQuantifier.set_params" > (quapy.method.base.BaseQuantifier method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.set_params" > (quapy.method.meta.Ensemble method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.neural.QuaNetTrainer.set_params" > (quapy.method.neural.QuaNetTrainer method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.set_params" > (quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation method)< / a >
< / li >
< li > < a href = "quapy.html#quapy.model_selection.GridSearchQ.set_params" > (quapy.model_selection.GridSearchQ method)< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.html#quapy.error.smooth" > smooth() (in module quapy.error)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ACC.solve_adjustment" > solve_adjustment() (quapy.method.aggregative.ACC class method)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.sout" > sout() (quapy.method.meta.Ensemble method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.split_stratified" > split_stratified() (quapy.data.base.LabelledCollection method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.Dataset.SplitStratified" > SplitStratified() (quapy.data.base.Dataset class method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.preprocessing.standardize" > standardize() (in module quapy.data.preprocessing)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.Dataset.stats" > stats() (quapy.data.base.Dataset method)< / a >
< ul >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.stats" > (quapy.data.base.LabelledCollection method)< / a >
< / li >
< / ul > < / li >
< li > < a href = "quapy.html#quapy.functional.strprev" > strprev() (in module quapy.functional)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.SVMAE" > SVMAE (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.SVMKLD" > SVMKLD (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.SVMNKLD" > SVMNKLD (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.svmperf.SVMperf" > SVMperf (class in quapy.classification.svmperf)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.SVMQ" > SVMQ (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.SVMRAE" > SVMRAE (class in quapy.method.aggregative)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "T" > T< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.T50" > T50 (class in quapy.method.aggregative)< / a >
< / li >
< li > < a href = "quapy.html#quapy.util.temp_seed" > temp_seed() (in module quapy.util)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.preprocessing.text2tfidf" > text2tfidf() (in module quapy.data.preprocessing)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.TextClassifierNet" > TextClassifierNet (class in quapy.classification.neural)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.ThresholdOptimization" > ThresholdOptimization (class in quapy.method.aggregative)< / a >
< / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.classification.html#quapy.classification.neural.TorchDataset" > TorchDataset (class in quapy.classification.neural)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.aggregative.training_helper" > training_helper() (in module quapy.method.aggregative)< / a >
< / li >
2021-11-12 14:30:02 +01:00
< li > < a href = "quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.transform" > transform() (quapy.classification.methods.LowRankLogisticRegression method)< / a >
2021-11-09 15:50:53 +01:00
< ul >
< li > < a href = "quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.transform" > (quapy.classification.neural.NeuralClassifierTrainer method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.preprocessing.IndexTransformer.transform" > (quapy.data.preprocessing.IndexTransformer method)< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "U" > U< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.html#quapy.functional.uniform_prevalence_sampling" > uniform_prevalence_sampling() (in module quapy.functional)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.uniform_sampling" > uniform_sampling() (quapy.data.base.LabelledCollection method)< / a >
< / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.uniform_sampling_index" > uniform_sampling_index() (quapy.data.base.LabelledCollection method)< / a >
< / li >
< li > < a href = "quapy.html#quapy.functional.uniform_simplex_sampling" > uniform_simplex_sampling() (in module quapy.functional)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "V" > V< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.classification.html#quapy.classification.svmperf.SVMperf.valid_losses" > valid_losses (quapy.classification.svmperf.SVMperf attribute)< / a >
< / li >
< li > < a href = "quapy.method.html#quapy.method.meta.Ensemble.VALID_POLICIES" > VALID_POLICIES (quapy.method.meta.Ensemble attribute)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.CNNnet.vocabulary_size" > vocabulary_size (quapy.classification.neural.CNNnet property)< / a >
< ul >
< li > < a href = "quapy.classification.html#quapy.classification.neural.LSTMnet.vocabulary_size" > (quapy.classification.neural.LSTMnet property)< / a >
< / li >
< li > < a href = "quapy.classification.html#quapy.classification.neural.TextClassifierNet.vocabulary_size" > (quapy.classification.neural.TextClassifierNet property)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.Dataset.vocabulary_size" > (quapy.data.base.Dataset property)< / a >
< / li >
< / ul > < / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.preprocessing.IndexTransformer.vocabulary_size" > vocabulary_size() (quapy.data.preprocessing.IndexTransformer method)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "W" > W< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.data.html#quapy.data.datasets.warn" > warn() (in module quapy.data.datasets)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< h2 id = "X" > X< / h2 >
< table style = "width: 100%" class = "indextable genindextable" > < tr >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.method.html#quapy.method.aggregative.X" > X (class in quapy.method.aggregative)< / a >
< / li >
< / ul > < / td >
< td style = "width: 33%; vertical-align: top;" > < ul >
< li > < a href = "quapy.classification.html#quapy.classification.neural.TextClassifierNet.xavier_uniform" > xavier_uniform() (quapy.classification.neural.TextClassifierNet method)< / a >
< / li >
< li > < a href = "quapy.data.html#quapy.data.base.LabelledCollection.Xy" > Xy (quapy.data.base.LabelledCollection property)< / a >
< / li >
< / ul > < / td >
< / tr > < / table >
< div class = "clearer" > < / div >
< / div >
< / div >
< / div >
< div class = "sphinxsidebar" role = "navigation" aria-label = "main navigation" >
< div class = "sphinxsidebarwrapper" >
< div id = "searchbox" style = "display: none" role = "search" >
< h3 id = "searchlabel" > Quick search< / h3 >
< div class = "searchformwrapper" >
< form class = "search" action = "search.html" method = "get" >
< input type = "text" name = "q" aria-labelledby = "searchlabel" autocomplete = "off" autocorrect = "off" autocapitalize = "off" spellcheck = "false" / >
< input type = "submit" value = "Go" / >
< / form >
< / div >
< / div >
< script > $ ( '#searchbox' ) . show ( 0 ) ; < / script >
< / div >
< / div >
< div class = "clearer" > < / div >
< / div >
< div class = "related" role = "navigation" aria-label = "related navigation" >
< h3 > Navigation< / h3 >
< ul >
< li class = "right" style = "margin-right: 10px" >
< a href = "#" title = "General Index"
>index< / a > < / li >
< li class = "right" >
< a href = "py-modindex.html" title = "Python Module Index"
>modules< / a > |< / li >
< li class = "nav-item nav-item-0" > < a href = "index.html" > QuaPy 0.1.6 documentation< / a > » < / li >
< li class = "nav-item nav-item-this" > < a href = "" > Index< / a > < / li >
< / ul >
< / div >
< div class = "footer" role = "contentinfo" >
© Copyright 2021, Alejandro Moreo.
Created using < a href = "https://www.sphinx-doc.org/" > Sphinx< / a > 4.2.0.
< / div >
< / body >
< / html >