sampling better the KDEy-HD approach
This commit is contained in:
parent
dcfd61ae5b
commit
01ef81bf25
|
@ -8,7 +8,7 @@ from distribution_matching.method_dirichlety import DIRy
|
||||||
from sklearn.linear_model import LogisticRegression
|
from sklearn.linear_model import LogisticRegression
|
||||||
from method_kdey_closed_efficient import KDEyclosed_efficient
|
from method_kdey_closed_efficient import KDEyclosed_efficient
|
||||||
|
|
||||||
METHODS = ['ACC', 'PACC', 'HDy-OvA', 'DM-T', 'DM-HD', 'KDEy-DMhd3', 'KDEy-DMhd4', 'DM-CS', 'KDEy-closed++', 'DIR', 'EMQ', 'KDEy-ML'] #['ACC', 'PACC', 'HDy-OvA', 'DIR', 'DM', 'KDEy-DMhd3', 'KDEy-closed++', 'EMQ', 'KDEy-ML'] #, 'KDEy-DMhd2'] #, 'KDEy-DMhd2', 'DM-HD'] 'KDEy-DMjs', 'KDEy-DM', 'KDEy-ML+', 'KDEy-DMhd3+', 'EMQ-C',
|
METHODS = ['ACC', 'PACC', 'HDy-OvA', 'DM-T', 'DM-HD', 'KDEy-DMhd4', 'DM-CS', 'KDEy-closed++', 'DIR', 'EMQ', 'KDEy-ML'] #['ACC', 'PACC', 'HDy-OvA', 'DIR', 'DM', 'KDEy-DMhd3', 'KDEy-closed++', 'EMQ', 'KDEy-ML'] #, 'KDEy-DMhd2'] #, 'KDEy-DMhd2', 'DM-HD'] 'KDEy-DMjs', 'KDEy-DM', 'KDEy-ML+', 'KDEy-DMhd3+', 'EMQ-C',
|
||||||
BIN_METHODS = [x.replace('-OvA', '') for x in METHODS]
|
BIN_METHODS = [x.replace('-OvA', '') for x in METHODS]
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -130,7 +130,7 @@ class KDEy(AggregativeProbabilisticQuantifier):
|
||||||
N = self.montecarlo_trials
|
N = self.montecarlo_trials
|
||||||
rs = self.random_state
|
rs = self.random_state
|
||||||
self.reference_samples = np.vstack([kde_i.sample(N, random_state=rs) for kde_i in self.val_densities])
|
self.reference_samples = np.vstack([kde_i.sample(N, random_state=rs) for kde_i in self.val_densities])
|
||||||
self.reference_classwise_densities = np.asarray([self.pdf(kde_j, samples_i) for kde_j in self.val_densities])
|
self.reference_classwise_densities = np.asarray([self.pdf(kde_j, self.reference_samples) for kde_j in self.val_densities])
|
||||||
self.reference_density = np.mean(self.reference_classwise_densities, axis=0) # equiv. to (uniform @ self.reference_classwise_densities)
|
self.reference_density = np.mean(self.reference_classwise_densities, axis=0) # equiv. to (uniform @ self.reference_classwise_densities)
|
||||||
elif self.target == 'min_divergence_deprecated': # the version of the first draft, with n*N presampled, then alpha*N chosen for class
|
elif self.target == 'min_divergence_deprecated': # the version of the first draft, with n*N presampled, then alpha*N chosen for class
|
||||||
self.class_samples = [kde_i.sample(self.montecarlo_trials, random_state=self.random_state) for kde_i in self.val_densities]
|
self.class_samples = [kde_i.sample(self.montecarlo_trials, random_state=self.random_state) for kde_i in self.val_densities]
|
||||||
|
|
Loading…
Reference in New Issue