scripting experiments binary and multiclass

This commit is contained in:
Alejandro Moreo Fernandez 2025-11-17 12:22:40 +01:00
parent 2f83a520c7
commit 12b431ef4b
3 changed files with 126 additions and 35 deletions

View File

@ -1,13 +1,16 @@
import os
import warnings
from os.path import join
from pathlib import Path
from sklearn.linear_model import LogisticRegression
import quapy as qp
from BayesianKDEy._bayeisan_kdey import BayesianKDEy
from method.aggregative import AggregativeQuantifier
from quapy.method.base import BinaryQuantifier
from quapy.model_selection import GridSearchQ
from quapy.data import Dataset
# from BayesianKDEy.plot_simplex import plot_prev_points, plot_prev_points_matplot
from quapy.method.confidence import ConfidenceIntervals, BayesianCC, PQ
from quapy.method.confidence import ConfidenceIntervals, BayesianCC, PQ, WithConfidenceABC
from quapy.functional import strprev
from quapy.method.aggregative import KDEyML
from quapy.protocol import UPP
@ -15,27 +18,33 @@ import quapy.functional as F
import numpy as np
from tqdm import tqdm
from scipy.stats import dirichlet
from collections import defaultdict
from time import time
from sklearn.base import clone
def new_classifier():
lr_hyper = {
'classifier__C': np.logspace(-3,3,7),
'classifier__class_weight': ['balanced', None]
}
# lr_hyper = {
# 'classifier__C': np.logspace(-3,3,7),
# 'classifier__class_weight': ['balanced', None]
# }
lr_hyper = {}
lr = LogisticRegression()
return lr, lr_hyper
def methods():
cls, cls_hyper = new_classifier()
# yield 'BayesianACC', BayesianCC(cls, mcmc_seed=0), cls_hyper
# yield 'BayesianHDy', PQ(cls, stan_seed=0), {**cls_hyper, 'n_bins': [3,4,5,8,16,32]}
yield 'BayesianKDEy', BayesianKDEy(cls, mcmc_seed=0), {**cls_hyper, 'bandwidth': [0.001, 0.005, 0.01, 0.05, 0.1, 0.2]}
# yield 'BayesianACC', BayesianCC(clone(cls), mcmc_seed=0), cls_hyper
# yield 'BayesianHDy', PQ(clone(cls), stan_seed=0), {**cls_hyper, 'n_bins': [3,4,5,8,16,32]}
yield 'BayesianKDEy', BayesianKDEy(clone(cls), mcmc_seed=0), {**cls_hyper, 'bandwidth': [0.001, 0.005, 0.01, 0.05, 0.1, 0.2]}
def experiment(dataset: Dataset, method: AggregativeQuantifier, method_name: str, grid: dict):
def experiment(dataset: Dataset, method: WithConfidenceABC, grid: dict):
with qp.util.temp_seed(0):
# model selection
train, test = dataset.train_test
train_prevalence = train.prevalence()
if len(grid)>0:
train, val = train.split_stratified(train_prop=0.6, random_state=0)
mod_sel = GridSearchQ(
model=method,
@ -46,29 +55,80 @@ def experiment(dataset: Dataset, method: AggregativeQuantifier, method_name: str
verbose=True
).fit(*train.Xy)
optim_quantifier = mod_sel.best_model()
optim_hyper = mod_sel.best_params_
print(f'model_selection for {method_name} ended: chosen hyper-params {optim_hyper}')
best_params = mod_sel.best_params_
best_score = mod_sel.best_score_
tr_time = mod_sel.refit_time_
else:
t_init = time()
method.fit(*train.Xy)
tr_time = time() - t_init
best_params, best_score = {}, -1
optim_quantifier = method
# test
report = qp.evaluation.evaluation_report(
optim_quantifier,
protocol=UPP(test, repeats=500, random_state=0),
verbose=True
)
results = defaultdict(list)
test_generator = UPP(test, repeats=500, random_state=0)
for i, (sample_X, true_prevalence) in enumerate(test_generator()):
t_init = time()
point_estimate, region = optim_quantifier.predict_conf(sample_X)
ttime = time()-t_init
results['true-prevs'].append(true_prevalence)
results['point-estim'].append(point_estimate)
results['shift'].append(qp.error.ae(true_prevalence, train_prevalence))
results['ae'].append(qp.error.ae(prevs_true=true_prevalence, prevs_hat=point_estimate))
results['rae'].append(qp.error.rae(prevs_true=true_prevalence, prevs_hat=point_estimate))
results['coverage'].append(region.coverage(true_prevalence))
results['amplitude'].append(region.montecarlo_proportion(n_trials=50_000))
results['test-time'].append(ttime)
report = {
'optim_hyper': best_params,
'optim_score': best_score,
'refit_time': tr_time,
'train-prev': train_prevalence,
'results': {k:np.asarray(v) for k,v in results.items()}
}
return report
def experiment_path(dir:Path, dataset_name:str, method_name:str):
os.makedirs(dir, exist_ok=True)
return dir/f'{dataset_name}__{method_name}.pkl'
if __name__ == '__main__':
qp.environ["SAMPLE_SIZE"] = 500
datasets = qp.datasets.UCI_BINARY_DATASETS
for dataset in datasets:
data = qp.datasets.fetch_UCIBinaryDataset(dataset)
binary = {
'datasets': qp.datasets.UCI_BINARY_DATASETS,
'fetch_fn': qp.datasets.fetch_UCIBinaryDataset,
'sample_size': 500
}
multiclass = {
'datasets': qp.datasets.UCI_MULTICLASS_DATASETS,
'fetch_fn': qp.datasets.fetch_UCIMulticlassDataset,
'sample_size': 1000
}
result_dir = Path('./results')
for setup in [binary, multiclass]:
qp.environ['SAMPLE_SIZE'] = setup['sample_size']
for data_name in setup['datasets']:
data = setup['fetch_fn'](data_name)
is_binary = data.n_classes==2
result_subdir = result_dir / ('binary' if is_binary else 'multiclass')
for method_name, method, hyper_params in methods():
report = experiment(data, method, method_name, hyper_params)
print(f'{method_name=} got {report.mean(numeric_only=True)}')
if isinstance(method, BinaryQuantifier) and not is_binary:
continue
result_path = experiment_path(result_subdir, data_name, method_name)
report = qp.util.pickled_resource(result_path, experiment, data, method, hyper_params)
print(f'dataset={data_name}, '
f'method={method_name}: '
f'mae={report["results"]["ae"].mean():.3f}, '
f'coverage={report["results"]["coverage"].mean():.3f}, '
f'amplitude={report["results"]["amplitude"].mean():.3f}, ')

View File

@ -0,0 +1,31 @@
import pickle
from collections import defaultdict
import pandas as pd
from glob import glob
from pathlib import Path
for setup in ['binary', 'multiclass']:
path = f'./results/{setup}/*.pkl'
table = defaultdict(list)
for file in glob(path):
file = Path(file)
dataset, method = file.name.replace('.pkl', '').split('__')
report = pickle.load(open(file, 'rb'))
results = report['results']
n_samples = len(results['ae'])
table['method'].extend([method] * n_samples)
table['dataset'].extend([dataset] * n_samples)
table['ae'].extend(results['ae'])
table['coverage'].extend(results['coverage'])
table['amplitude'].extend(results['amplitude'])
pd.set_option('display.max_columns', None)
pd.set_option('display.width', 1000)
pd.set_option('display.max_rows', None)
df = pd.DataFrame(table)
pv = pd.pivot_table(df, index='dataset', columns='method', values=['ae', 'coverage', 'amplitude'])
print(f'{setup=}')
print(pv)
print()

View File

@ -112,7 +112,7 @@ class WithConfidenceABC(ABC):
return self.predict_conf(instances=instances, confidence_level=confidence_level)
@classmethod
def construct_region(cls, prev_estims, confidence_level=0.95, method='intervals'):
def construct_region(cls, prev_estims, confidence_level=0.95, method='intervals')->ConfidenceRegionABC:
"""
Construct a confidence region given many prevalence estimations.