preliminary experiment for post-hoc prediction

This commit is contained in:
Alejandro Moreo Fernandez 2023-11-09 10:28:40 +01:00
parent 2df89c83e8
commit 288181c9c7
1 changed files with 89 additions and 0 deletions

89
Retrieval/preliminary.py Normal file
View File

@ -0,0 +1,89 @@
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
import quapy as qp
import quapy.functional as F
from method.non_aggregative import MaximumLikelihoodPrevalenceEstimation
from quapy.method.aggregative import ClassifyAndCount, EMQ, ACC, PCC, PACC
from quapy.protocol import AbstractProtocol
from quapy.data.base import LabelledCollection
from glob import glob
from os.path import join
def methods():
yield ('MLPE', MaximumLikelihoodPrevalenceEstimation())
yield ('CC', ClassifyAndCount(LogisticRegression(n_jobs=-1)))
yield ('ACC', ACC(LogisticRegression(n_jobs=-1)))
yield ('PCC', PCC(LogisticRegression(n_jobs=-1)))
yield ('PACC', PACC(LogisticRegression(n_jobs=-1)))
yield ('EMQ', EMQ(LogisticRegression(n_jobs=-1)))
def load_txt_sample(path, verbose=False):
if verbose:
print(f'loading {path}...', end='')
df = pd.read_csv(path, sep='\t')
if verbose:
print('[done]')
X = df['text']
y = df['first_letter_category']
return X, y
class RetrievedSamples(AbstractProtocol):
def __init__(self, path_dir: str, load_fn, vectorizer, classes):
self.path_dir = path_dir
self.load_fn = load_fn
self.vectorizer = vectorizer
self.classes = classes
def __call__(self):
for file in glob(join(self.path_dir, 'test_data_*.txt')):
X, y = self.load_fn(file)
if len(X)!=qp.environ['SAMPLE_SIZE']:
print(f'[warning]: file {file} contains {len(X)} instances (expected: {qp.environ["SAMPLE_SIZE"]})')
# assert len(X) == qp.environ['SAMPLE_SIZE'], f'unexpected sample size for file {file}, found {len(X)}'
X = self.vectorizer.transform(X)
sample = LabelledCollection(X, y, classes=self.classes)
yield sample.Xp
qp.environ['SAMPLE_SIZE']=100
data_path = './data'
train_path = join(data_path, 'train_data.txt')
tfidf = TfidfVectorizer(sublinear_tf=True, min_df=5)
training = LabelledCollection.load(train_path, loader_func=load_txt_sample, verbose=True)
# training = training.sampling(1000)
Xtr, ytr = training.Xy
Xtr = tfidf.fit_transform(Xtr)
print('Xtr shape = ', Xtr.shape)
training = LabelledCollection(Xtr, ytr)
classes = training.classes_
test_prot = RetrievedSamples(data_path, load_fn=load_txt_sample, vectorizer=tfidf, classes=classes)
print('Training prevalence:', F.strprev(training.prevalence()))
for X, p in test_prot():
print('Test prevalence:', F.strprev(p))
for method_name, quantifier in methods():
print('training ', method_name)
quantifier.fit(training)
print('[done]')
report = qp.evaluation.evaluation_report(quantifier, test_prot, error_metrics=['mae', 'mrae'], verbose=True)
print(report.mean())