Merge branch 'pawel-czyz-additional-solvers-and-documentation' into devel

I have revised this PR (which was very nice, thanks). I have made some modifications including
improvements in the normalization functions, documentation, and refactoring of qp.functional.

I will leave this in devel until I find the time to "stress-test" the modifications.

Thanks to Pawel Czyz for the nice contribution!
This commit is contained in:
Alejandro Moreo Fernandez 2024-03-19 15:02:56 +01:00
commit 472e49047e
30 changed files with 2447 additions and 1145 deletions

View File

@ -1,95 +0,0 @@
ensembles seem to be broken; they have an internal model selection which takes the parameters, but since quapy now
works with protocols it would need to know the validation set in order to pass something like
"protocol: APP(val, etc.)"
sample_size should not be mandatory when qp.environ['SAMPLE_SIZE'] has been specified
clean all the cumbersome methods that have to be implemented for new quantifiers (e.g., n_classes_ prop, etc.)
make truly parallel the GridSearchQ
make more examples in the "examples" directory
merge with master, because I had to fix some problems with QuaNet due to an issue notified via GitHub!
added cross_val_predict in qp.model_selection (i.e., a cross_val_predict for quantification) --would be nice to have
it parallelized
check the OneVsAll module(s)
check the set_params de neural.py, because the separation of estimator__<param> is not implemented; see also
__check_params_colision
HDy can be customized so that the number of bins is specified, instead of explored within the fit method
Packaging:
==========================================
Document methods with paper references
unit-tests
clean wiki_examples!
Refactor:
==========================================
Unify ThresholdOptimization methods, as an extension of PACC (and not ACC), the fit methods are almost identical and
use a prob classifier (take into account that PACC uses pcc internally, whereas the threshold methods use cc
instead). The fit method of ACC and PACC has a block for estimating the validation estimates that should be unified
as well...
Refactor protocols. APP and NPP related functionalities are duplicated in functional, LabelledCollection, and evaluation
New features:
==========================================
Add "measures for evaluating ordinal"?
Add datasets for topic.
Do we want to cover cross-lingual quantification natively in QuaPy, or does it make more sense as an application on top?
Current issues:
==========================================
Revise the class structure of quantification methods and the methods they inherit... There is some confusion regarding
methods isbinary, isprobabilistic, and the like. The attribute "learner_" in aggregative quantifiers is also
confusing, since there is a getter and a setter.
Remove the "deep" in get_params. There is no real compatibility with scikit-learn as for now.
SVMperf-based learners do not remove temp files in __del__?
In binary quantification (hp, kindle, imdb) we used F1 in the minority class (which in kindle and hp happens to be the
negative class). This is not covered in this new implementation, in which the binary case is not treated as such, but as
an instance of single-label with 2 labels. Check
Add automatic reindex of class labels in LabelledCollection (currently, class indexes should be ordered and with no gaps)
OVR I believe is currently tied to aggregative methods. We should provide a general interface also for general quantifiers
Currently, being "binary" only adds one checker; we should figure out how to impose the check to be automatically performed
Add random seed management to support replicability (see temp_seed in util.py).
GridSearchQ is not trully parallelized. It only parallelizes on the predictions.
In the context of a quantifier (e.g., QuaNet or CC), the parameters of the learner should be prefixed with "estimator__",
in QuaNet this is resolved with a __check_params_colision, but this should be improved. It might be cumbersome to
impose the "estimator__" prefix for, e.g., quantifiers like CC though... This should be changed everywhere...
QuaNet needs refactoring. The base quantifiers ACC and PACC receive val_data with instances already transformed. This
issue is due to a bad design.
Improvements:
==========================================
Explore the hyperparameter "number of bins" in HDy
Rename EMQ to SLD ?
Parallelize the kFCV in ACC and PACC?
Parallelize model selection trainings
We might want to think of (improving and) adding the class Tabular (it is defined and used on branch tweetsent). A more
recent version is in the project ql4facct. This class is meant to generate latex tables from results (highligting
best results, computing statistical tests, colouring cells, producing rankings, producing averages, etc.). Trying
to generate tables is typically a bad idea, but in this specific case we do have pretty good control of what an
experiment looks like. (Do we want to abstract experimental results? this could be useful not only for tables but
also for plots).
Add proper logging system. Currently we use print
It might be good to simplify the number of methods that have to be implemented for any new Quantifier. At the moment,
there are many functions like get_params, set_params, and, specially, @property classes_, which are cumbersome to
implement for quick experiments. A possible solution is to impose get_params and set_params only in cases in which
the model extends some "ModelSelectable" interface only. The classes_ should have a default implementation.
Checks:
==========================================
How many times is the system of equations for ACC and PACC not solved? How many times is it clipped? Do they sum up
to one always?
Re-check how hyperparameters from the quantifier and hyperparameters from the classifier (in aggregative quantifiers)
is handled. In scikit-learn the hyperparameters from a wrapper method are indicated directly whereas the hyperparams
from the internal learner are prefixed with "estimator__". In QuaPy, combinations having to do with the classifier
can be computed at the begining, and then in an internal loop the hyperparams of the quantifier can be explored,
passing fit_learner=False.
Re-check Ensembles. As for now, they are strongly tied to aggregative quantifiers.
Re-think the environment variables. Maybe add new ones (like, for example, parameters for the plots)
Do we want to wrap prevalences (currently simple np.ndarray) as a class? This might be convenient for some interfaces
(e.g., for specifying artificial prevalences in samplings, for printing them -- currently supported through
F.strprev(), etc.). This might however add some overload, and prevent/difficult post processing with numpy.
Would be nice to get a better integration with sklearn.

20
docs/Makefile Normal file
View File

@ -0,0 +1,20 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = source
BUILDDIR = build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

View File

@ -4,7 +4,7 @@
* *
* Sphinx stylesheet -- basic theme. * Sphinx stylesheet -- basic theme.
* *
* :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
* :license: BSD, see LICENSE for details. * :license: BSD, see LICENSE for details.
* *
*/ */
@ -237,10 +237,6 @@ a.headerlink {
visibility: hidden; visibility: hidden;
} }
a:visited {
color: #551A8B;
}
h1:hover > a.headerlink, h1:hover > a.headerlink,
h2:hover > a.headerlink, h2:hover > a.headerlink,
h3:hover > a.headerlink, h3:hover > a.headerlink,
@ -328,7 +324,6 @@ aside.sidebar {
p.sidebar-title { p.sidebar-title {
font-weight: bold; font-weight: bold;
} }
nav.contents, nav.contents,
aside.topic, aside.topic,
div.admonition, div.topic, blockquote { div.admonition, div.topic, blockquote {
@ -336,7 +331,6 @@ div.admonition, div.topic, blockquote {
} }
/* -- topics ---------------------------------------------------------------- */ /* -- topics ---------------------------------------------------------------- */
nav.contents, nav.contents,
aside.topic, aside.topic,
div.topic { div.topic {
@ -612,7 +606,6 @@ ol.simple p,
ul.simple p { ul.simple p {
margin-bottom: 0; margin-bottom: 0;
} }
aside.footnote > span, aside.footnote > span,
div.citation > span { div.citation > span {
float: left; float: left;
@ -674,16 +667,6 @@ dd {
margin-left: 30px; margin-left: 30px;
} }
.sig dd {
margin-top: 0px;
margin-bottom: 0px;
}
.sig dl {
margin-top: 0px;
margin-bottom: 0px;
}
dl > dd:last-child, dl > dd:last-child,
dl > dd:last-child > :last-child { dl > dd:last-child > :last-child {
margin-bottom: 0; margin-bottom: 0;
@ -752,14 +735,6 @@ abbr, acronym {
cursor: help; cursor: help;
} }
.translated {
background-color: rgba(207, 255, 207, 0.2)
}
.untranslated {
background-color: rgba(255, 207, 207, 0.2)
}
/* -- code displays --------------------------------------------------------- */ /* -- code displays --------------------------------------------------------- */
pre { pre {

View File

@ -4,7 +4,7 @@
* *
* Base JavaScript utilities for all Sphinx HTML documentation. * Base JavaScript utilities for all Sphinx HTML documentation.
* *
* :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
* :license: BSD, see LICENSE for details. * :license: BSD, see LICENSE for details.
* *
*/ */

View File

@ -1,5 +1,6 @@
const DOCUMENTATION_OPTIONS = { var DOCUMENTATION_OPTIONS = {
VERSION: '0.1.8', URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'),
VERSION: '0.1.9',
LANGUAGE: 'en', LANGUAGE: 'en',
COLLAPSE_INDEX: false, COLLAPSE_INDEX: false,
BUILDER: 'html', BUILDER: 'html',

View File

@ -5,7 +5,7 @@
* This script contains the language-specific data used by searchtools.js, * This script contains the language-specific data used by searchtools.js,
* namely the list of stopwords, stemmer, scorer and splitter. * namely the list of stopwords, stemmer, scorer and splitter.
* *
* :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
* :license: BSD, see LICENSE for details. * :license: BSD, see LICENSE for details.
* *
*/ */

View File

@ -4,7 +4,7 @@
* *
* Sphinx JavaScript utilities for the full-text search. * Sphinx JavaScript utilities for the full-text search.
* *
* :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
* :license: BSD, see LICENSE for details. * :license: BSD, see LICENSE for details.
* *
*/ */
@ -57,12 +57,12 @@ const _removeChildren = (element) => {
const _escapeRegExp = (string) => const _escapeRegExp = (string) =>
string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string
const _displayItem = (item, searchTerms, highlightTerms) => { const _displayItem = (item, searchTerms) => {
const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; const docBuilder = DOCUMENTATION_OPTIONS.BUILDER;
const docUrlRoot = DOCUMENTATION_OPTIONS.URL_ROOT;
const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX;
const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX;
const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY;
const contentRoot = document.documentElement.dataset.content_root;
const [docName, title, anchor, descr, score, _filename] = item; const [docName, title, anchor, descr, score, _filename] = item;
@ -75,24 +75,20 @@ const _displayItem = (item, searchTerms, highlightTerms) => {
if (dirname.match(/\/index\/$/)) if (dirname.match(/\/index\/$/))
dirname = dirname.substring(0, dirname.length - 6); dirname = dirname.substring(0, dirname.length - 6);
else if (dirname === "index/") dirname = ""; else if (dirname === "index/") dirname = "";
requestUrl = contentRoot + dirname; requestUrl = docUrlRoot + dirname;
linkUrl = requestUrl; linkUrl = requestUrl;
} else { } else {
// normal html builders // normal html builders
requestUrl = contentRoot + docName + docFileSuffix; requestUrl = docUrlRoot + docName + docFileSuffix;
linkUrl = docName + docLinkSuffix; linkUrl = docName + docLinkSuffix;
} }
let linkEl = listItem.appendChild(document.createElement("a")); let linkEl = listItem.appendChild(document.createElement("a"));
linkEl.href = linkUrl + anchor; linkEl.href = linkUrl + anchor;
linkEl.dataset.score = score; linkEl.dataset.score = score;
linkEl.innerHTML = title; linkEl.innerHTML = title;
if (descr) { if (descr)
listItem.appendChild(document.createElement("span")).innerHTML = listItem.appendChild(document.createElement("span")).innerHTML =
" (" + descr + ")"; " (" + descr + ")";
// highlight search terms in the description
if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js
highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted"));
}
else if (showSearchSummary) else if (showSearchSummary)
fetch(requestUrl) fetch(requestUrl)
.then((responseData) => responseData.text()) .then((responseData) => responseData.text())
@ -101,9 +97,6 @@ const _displayItem = (item, searchTerms, highlightTerms) => {
listItem.appendChild( listItem.appendChild(
Search.makeSearchSummary(data, searchTerms) Search.makeSearchSummary(data, searchTerms)
); );
// highlight search terms in the summary
if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js
highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted"));
}); });
Search.output.appendChild(listItem); Search.output.appendChild(listItem);
}; };
@ -122,15 +115,14 @@ const _finishSearch = (resultCount) => {
const _displayNextItem = ( const _displayNextItem = (
results, results,
resultCount, resultCount,
searchTerms, searchTerms
highlightTerms,
) => { ) => {
// results left, load the summary and display it // results left, load the summary and display it
// this is intended to be dynamic (don't sub resultsCount) // this is intended to be dynamic (don't sub resultsCount)
if (results.length) { if (results.length) {
_displayItem(results.pop(), searchTerms, highlightTerms); _displayItem(results.pop(), searchTerms);
setTimeout( setTimeout(
() => _displayNextItem(results, resultCount, searchTerms, highlightTerms), () => _displayNextItem(results, resultCount, searchTerms),
5 5
); );
} }
@ -164,7 +156,7 @@ const Search = {
const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html');
htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() });
const docContent = htmlElement.querySelector('[role="main"]'); const docContent = htmlElement.querySelector('[role="main"]');
if (docContent) return docContent.textContent; if (docContent !== undefined) return docContent.textContent;
console.warn( console.warn(
"Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template."
); );
@ -288,9 +280,9 @@ const Search = {
let results = []; let results = [];
_removeChildren(document.getElementById("search-progress")); _removeChildren(document.getElementById("search-progress"));
const queryLower = query.toLowerCase().trim(); const queryLower = query.toLowerCase();
for (const [title, foundTitles] of Object.entries(allTitles)) { for (const [title, foundTitles] of Object.entries(allTitles)) {
if (title.toLowerCase().trim().includes(queryLower) && (queryLower.length >= title.length/2)) { if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) {
for (const [file, id] of foundTitles) { for (const [file, id] of foundTitles) {
let score = Math.round(100 * queryLower.length / title.length) let score = Math.round(100 * queryLower.length / title.length)
results.push([ results.push([
@ -368,7 +360,7 @@ const Search = {
// console.info("search results:", Search.lastresults); // console.info("search results:", Search.lastresults);
// print the results // print the results
_displayNextItem(results, results.length, searchTerms, highlightTerms); _displayNextItem(results, results.length, searchTerms);
}, },
/** /**

View File

@ -1,22 +1,23 @@
<!DOCTYPE html> <!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./"> <html class="writer-html5" lang="en">
<head> <head>
<meta charset="utf-8" /> <meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Index &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title> <title>Index &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.9 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" /> <link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" /> <link rel="stylesheet" type="text/css" href="_static/css/theme.css" />
<!--[if lt IE 9]> <!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script> <script src="_static/js/html5shiv.min.js"></script>
<![endif]--> <![endif]-->
<script src="_static/jquery.js?v=5d32c60e"></script> <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script> <script src="_static/jquery.js"></script>
<script src="_static/documentation_options.js?v=22607128"></script> <script src="_static/underscore.js"></script>
<script src="_static/doctools.js?v=9a2dae69"></script> <script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script> <script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/js/theme.js"></script> <script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="#" /> <link rel="index" title="Index" href="#" />
<link rel="search" title="Search" href="search.html" /> <link rel="search" title="Search" href="search.html" />
@ -115,8 +116,6 @@
<li><a href="quapy.html#quapy.error.acce">acce() (in module quapy.error)</a> <li><a href="quapy.html#quapy.error.acce">acce() (in module quapy.error)</a>
</li> </li>
<li><a href="quapy.data.html#quapy.data.preprocessing.IndexTransformer.add_word">add_word() (quapy.data.preprocessing.IndexTransformer method)</a> <li><a href="quapy.data.html#quapy.data.preprocessing.IndexTransformer.add_word">add_word() (quapy.data.preprocessing.IndexTransformer method)</a>
</li>
<li><a href="quapy.html#quapy.functional.adjusted_quantification">adjusted_quantification() (in module quapy.functional)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.aggregative.AdjustedClassifyAndCount">AdjustedClassifyAndCount (in module quapy.method.aggregative)</a> <li><a href="quapy.method.html#quapy.method.aggregative.AdjustedClassifyAndCount">AdjustedClassifyAndCount (in module quapy.method.aggregative)</a>
</li> </li>
@ -136,6 +135,8 @@
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.aggregate">(quapy.method.aggregative.ACC method)</a> <li><a href="quapy.method.html#quapy.method.aggregative.ACC.aggregate">(quapy.method.aggregative.ACC method)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.aggregate">(quapy.method.aggregative.AggregativeQuantifier method)</a> <li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.aggregate">(quapy.method.aggregative.AggregativeQuantifier method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.BayesianCC.aggregate">(quapy.method.aggregative.BayesianCC method)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.aggregative.CC.aggregate">(quapy.method.aggregative.CC method)</a> <li><a href="quapy.method.html#quapy.method.aggregative.CC.aggregate">(quapy.method.aggregative.CC method)</a>
</li> </li>
@ -174,6 +175,8 @@
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.aggregation_fit">(quapy.method.aggregative.ACC method)</a> <li><a href="quapy.method.html#quapy.method.aggregative.ACC.aggregation_fit">(quapy.method.aggregative.ACC method)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.aggregation_fit">(quapy.method.aggregative.AggregativeQuantifier method)</a> <li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.aggregation_fit">(quapy.method.aggregative.AggregativeQuantifier method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.BayesianCC.aggregation_fit">(quapy.method.aggregative.BayesianCC method)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.aggregative.CC.aggregation_fit">(quapy.method.aggregative.CC method)</a> <li><a href="quapy.method.html#quapy.method.aggregative.CC.aggregation_fit">(quapy.method.aggregative.CC method)</a>
</li> </li>
@ -221,6 +224,8 @@
<li><a href="quapy.method.html#quapy.method._kdey.KDEBase.BANDWIDTH_METHOD">BANDWIDTH_METHOD (quapy.method._kdey.KDEBase attribute)</a> <li><a href="quapy.method.html#quapy.method._kdey.KDEBase.BANDWIDTH_METHOD">BANDWIDTH_METHOD (quapy.method._kdey.KDEBase attribute)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.base.BaseQuantifier">BaseQuantifier (class in quapy.method.base)</a> <li><a href="quapy.method.html#quapy.method.base.BaseQuantifier">BaseQuantifier (class in quapy.method.base)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.BayesianCC">BayesianCC (class in quapy.method.aggregative)</a>
</li> </li>
<li><a href="quapy.classification.html#quapy.classification.calibration.BCTSCalibration">BCTSCalibration (class in quapy.classification.calibration)</a> <li><a href="quapy.classification.html#quapy.classification.calibration.BCTSCalibration">BCTSCalibration (class in quapy.classification.calibration)</a>
</li> </li>
@ -284,11 +289,13 @@
</ul></li> </ul></li>
<li><a href="quapy.method.html#quapy.method.aggregative.ClassifyAndCount">ClassifyAndCount (in module quapy.method.aggregative)</a> <li><a href="quapy.method.html#quapy.method.aggregative.ClassifyAndCount">ClassifyAndCount (in module quapy.method.aggregative)</a>
</li> </li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetTrainer.clean_checkpoint">clean_checkpoint() (quapy.method._neural.QuaNetTrainer method)</a> <li><a href="quapy.method.html#quapy.method._neural.QuaNetTrainer.clean_checkpoint">clean_checkpoint() (quapy.method._neural.QuaNetTrainer method)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetTrainer.clean_checkpoint_dir">clean_checkpoint_dir() (quapy.method._neural.QuaNetTrainer method)</a> <li><a href="quapy.method.html#quapy.method._neural.QuaNetTrainer.clean_checkpoint_dir">clean_checkpoint_dir() (quapy.method._neural.QuaNetTrainer method)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.html#quapy.functional.clip">clip() (in module quapy.functional)</a>
</li> </li>
<li><a href="quapy.classification.html#quapy.classification.neural.CNNnet">CNNnet (class in quapy.classification.neural)</a> <li><a href="quapy.classification.html#quapy.classification.neural.CNNnet">CNNnet (class in quapy.classification.neural)</a>
</li> </li>
@ -306,9 +313,13 @@
<li><a href="quapy.method.html#quapy.method._threshold_optim.X.condition">(quapy.method._threshold_optim.X method)</a> <li><a href="quapy.method.html#quapy.method._threshold_optim.X.condition">(quapy.method._threshold_optim.X method)</a>
</li> </li>
</ul></li> </ul></li>
<li><a href="quapy.html#quapy.functional.condsoftmax">condsoftmax() (in module quapy.functional)</a>
</li>
<li><a href="quapy.html#quapy.model_selection.ConfigStatus">ConfigStatus (class in quapy.model_selection)</a> <li><a href="quapy.html#quapy.model_selection.ConfigStatus">ConfigStatus (class in quapy.model_selection)</a>
</li> </li>
<li><a href="quapy.data.html#quapy.data.base.LabelledCollection.counts">counts() (quapy.data.base.LabelledCollection method)</a> <li><a href="quapy.data.html#quapy.data.base.LabelledCollection.counts">counts() (quapy.data.base.LabelledCollection method)</a>
</li>
<li><a href="quapy.html#quapy.functional.counts_from_labels">counts_from_labels() (in module quapy.functional)</a>
</li> </li>
<li><a href="quapy.html#quapy.util.create_if_not_exist">create_if_not_exist() (in module quapy.util)</a> <li><a href="quapy.html#quapy.util.create_if_not_exist">create_if_not_exist() (in module quapy.util)</a>
</li> </li>
@ -472,6 +483,8 @@
<li><a href="quapy.method.html#quapy.method.non_aggregative.DMx.fit">(quapy.method.non_aggregative.DMx method)</a> <li><a href="quapy.method.html#quapy.method.non_aggregative.DMx.fit">(quapy.method.non_aggregative.DMx method)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.fit">(quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation method)</a> <li><a href="quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.fit">(quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.non_aggregative.ReadMe.fit">(quapy.method.non_aggregative.ReadMe method)</a>
</li> </li>
<li><a href="quapy.html#quapy.model_selection.GridSearchQ.fit">(quapy.model_selection.GridSearchQ method)</a> <li><a href="quapy.html#quapy.model_selection.GridSearchQ.fit">(quapy.model_selection.GridSearchQ method)</a>
</li> </li>
@ -505,6 +518,8 @@
<table style="width: 100%" class="indextable genindextable"><tr> <table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul> <td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.get_collator">get_collator() (quapy.protocol.OnLabelledCollectionProtocol class method)</a> <li><a href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.get_collator">get_collator() (quapy.protocol.OnLabelledCollectionProtocol class method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.BayesianCC.get_conditional_probability_samples">get_conditional_probability_samples() (quapy.method.aggregative.BayesianCC method)</a>
</li> </li>
<li><a href="quapy.html#quapy.functional.get_divergence">get_divergence() (in module quapy.functional)</a> <li><a href="quapy.html#quapy.functional.get_divergence">get_divergence() (in module quapy.functional)</a>
</li> </li>
@ -542,6 +557,8 @@
</ul></li> </ul></li>
</ul></td> </ul></td>
<td style="width: 33%; vertical-align: top;"><ul> <td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.method.html#quapy.method.aggregative.BayesianCC.get_prevalence_samples">get_prevalence_samples() (quapy.method.aggregative.BayesianCC method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.meta.get_probability_distribution">get_probability_distribution() (in module quapy.method.meta)</a> <li><a href="quapy.method.html#quapy.method.meta.get_probability_distribution">get_probability_distribution() (in module quapy.method.meta)</a>
</li> </li>
<li><a href="quapy.html#quapy.util.get_quapy_home">get_quapy_home() (in module quapy.util)</a> <li><a href="quapy.html#quapy.util.get_quapy_home">get_quapy_home() (in module quapy.util)</a>
@ -628,18 +645,20 @@
<h2 id="L">L</h2> <h2 id="L">L</h2>
<table style="width: 100%" class="indextable genindextable"><tr> <table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul> <td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.html#quapy.functional.l1_norm">l1_norm() (in module quapy.functional)</a>
</li>
<li><a href="quapy.data.html#quapy.data.base.LabelledCollection">LabelledCollection (class in quapy.data.base)</a> <li><a href="quapy.data.html#quapy.data.base.LabelledCollection">LabelledCollection (class in quapy.data.base)</a>
</li> </li>
<li><a href="quapy.html#quapy.functional.linear_search">linear_search() (in module quapy.functional)</a> <li><a href="quapy.html#quapy.functional.linear_search">linear_search() (in module quapy.functional)</a>
</li> </li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.data.html#quapy.data.base.Dataset.load">load() (quapy.data.base.Dataset class method)</a> <li><a href="quapy.data.html#quapy.data.base.Dataset.load">load() (quapy.data.base.Dataset class method)</a>
<ul> <ul>
<li><a href="quapy.data.html#quapy.data.base.LabelledCollection.load">(quapy.data.base.LabelledCollection class method)</a> <li><a href="quapy.data.html#quapy.data.base.LabelledCollection.load">(quapy.data.base.LabelledCollection class method)</a>
</li> </li>
</ul></li> </ul></li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression">LowRankLogisticRegression (class in quapy.classification.methods)</a> <li><a href="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression">LowRankLogisticRegression (class in quapy.classification.methods)</a>
</li> </li>
<li><a href="quapy.classification.html#quapy.classification.neural.LSTMnet">LSTMnet (class in quapy.classification.neural)</a> <li><a href="quapy.classification.html#quapy.classification.neural.LSTMnet">LSTMnet (class in quapy.classification.neural)</a>
@ -673,6 +692,8 @@
<li><a href="quapy.method.html#quapy.method.meta.MedianEstimator">MedianEstimator (class in quapy.method.meta)</a> <li><a href="quapy.method.html#quapy.method.meta.MedianEstimator">MedianEstimator (class in quapy.method.meta)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.meta.MedianEstimator2">MedianEstimator2 (class in quapy.method.meta)</a> <li><a href="quapy.method.html#quapy.method.meta.MedianEstimator2">MedianEstimator2 (class in quapy.method.meta)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.METHODS">METHODS (quapy.method.aggregative.ACC attribute)</a>
</li> </li>
<li><a href="quapy.html#quapy.error.mkld">mkld() (in module quapy.error)</a> <li><a href="quapy.html#quapy.error.mkld">mkld() (in module quapy.error)</a>
</li> </li>
@ -686,7 +707,7 @@
module module
<ul> <ul>
<li><a href="generated/quapy.html#module-quapy">quapy</a>, <a href="quapy.html#module-quapy">[1]</a> <li><a href="quapy.html#module-quapy">quapy</a>
</li> </li>
<li><a href="quapy.classification.html#module-quapy.classification">quapy.classification</a> <li><a href="quapy.classification.html#module-quapy.classification">quapy.classification</a>
</li> </li>
@ -772,6 +793,8 @@
<li><a href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer">NeuralClassifierTrainer (class in quapy.classification.neural)</a> <li><a href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer">NeuralClassifierTrainer (class in quapy.classification.neural)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.aggregative.newELM">newELM() (in module quapy.method.aggregative)</a> <li><a href="quapy.method.html#quapy.method.aggregative.newELM">newELM() (in module quapy.method.aggregative)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.newInvariantRatioEstimation">newInvariantRatioEstimation() (quapy.method.aggregative.ACC class method)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.base.newOneVsAll">newOneVsAll() (in module quapy.method.base)</a> <li><a href="quapy.method.html#quapy.method.base.newOneVsAll">newOneVsAll() (in module quapy.method.base)</a>
</li> </li>
@ -786,6 +809,8 @@
<li><a href="quapy.method.html#quapy.method.aggregative.newSVMRAE">newSVMRAE() (in module quapy.method.aggregative)</a> <li><a href="quapy.method.html#quapy.method.aggregative.newSVMRAE">newSVMRAE() (in module quapy.method.aggregative)</a>
</li> </li>
<li><a href="quapy.html#quapy.error.nkld">nkld() (in module quapy.error)</a> <li><a href="quapy.html#quapy.error.nkld">nkld() (in module quapy.error)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.NORMALIZATIONS">NORMALIZATIONS (quapy.method.aggregative.ACC attribute)</a>
</li> </li>
<li><a href="quapy.html#quapy.functional.normalize_prevalence">normalize_prevalence() (in module quapy.functional)</a> <li><a href="quapy.html#quapy.functional.normalize_prevalence">normalize_prevalence() (in module quapy.functional)</a>
</li> </li>
@ -830,6 +855,8 @@
<li><a href="quapy.method.html#quapy.method.aggregative.PACC">PACC (class in quapy.method.aggregative)</a> <li><a href="quapy.method.html#quapy.method.aggregative.PACC">PACC (class in quapy.method.aggregative)</a>
</li> </li>
<li><a href="quapy.html#quapy.util.parallel">parallel() (in module quapy.util)</a> <li><a href="quapy.html#quapy.util.parallel">parallel() (in module quapy.util)</a>
</li>
<li><a href="quapy.html#quapy.util.parallel_unpack">parallel_unpack() (in module quapy.util)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.aggregative.PCC">PCC (class in quapy.method.aggregative)</a> <li><a href="quapy.method.html#quapy.method.aggregative.PCC">PCC (class in quapy.method.aggregative)</a>
</li> </li>
@ -880,6 +907,8 @@
<li><a href="quapy.method.html#quapy.method.aggregative.ProbabilisticAdjustedClassifyAndCount">ProbabilisticAdjustedClassifyAndCount (in module quapy.method.aggregative)</a> <li><a href="quapy.method.html#quapy.method.aggregative.ProbabilisticAdjustedClassifyAndCount">ProbabilisticAdjustedClassifyAndCount (in module quapy.method.aggregative)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.aggregative.ProbabilisticClassifyAndCount">ProbabilisticClassifyAndCount (in module quapy.method.aggregative)</a> <li><a href="quapy.method.html#quapy.method.aggregative.ProbabilisticClassifyAndCount">ProbabilisticClassifyAndCount (in module quapy.method.aggregative)</a>
</li>
<li><a href="quapy.html#quapy.functional.projection_simplex_sort">projection_simplex_sort() (in module quapy.functional)</a>
</li> </li>
</ul></td> </ul></td>
</tr></table> </tr></table>
@ -911,6 +940,8 @@
<li><a href="quapy.method.html#quapy.method.non_aggregative.DMx.quantify">(quapy.method.non_aggregative.DMx method)</a> <li><a href="quapy.method.html#quapy.method.non_aggregative.DMx.quantify">(quapy.method.non_aggregative.DMx method)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.quantify">(quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation method)</a> <li><a href="quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.quantify">(quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation method)</a>
</li>
<li><a href="quapy.method.html#quapy.method.non_aggregative.ReadMe.quantify">(quapy.method.non_aggregative.ReadMe method)</a>
</li> </li>
<li><a href="quapy.html#quapy.model_selection.GridSearchQ.quantify">(quapy.model_selection.GridSearchQ method)</a> <li><a href="quapy.html#quapy.model_selection.GridSearchQ.quantify">(quapy.model_selection.GridSearchQ method)</a>
</li> </li>
@ -919,7 +950,7 @@
quapy quapy
<ul> <ul>
<li><a href="generated/quapy.html#module-quapy">module</a>, <a href="quapy.html#module-quapy">[1]</a> <li><a href="quapy.html#module-quapy">module</a>
</li> </li>
</ul></li> </ul></li>
<li> <li>
@ -1108,15 +1139,17 @@
<li><a href="quapy.html#quapy.error.rae">rae() (in module quapy.error)</a> <li><a href="quapy.html#quapy.error.rae">rae() (in module quapy.error)</a>
</li> </li>
<li><a href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.random_state">random_state (quapy.protocol.AbstractStochasticSeededProtocol property)</a> <li><a href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.random_state">random_state (quapy.protocol.AbstractStochasticSeededProtocol property)</a>
</li>
<li><a href="quapy.method.html#quapy.method.non_aggregative.ReadMe">ReadMe (class in quapy.method.non_aggregative)</a>
</li> </li>
<li><a href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifier">RecalibratedProbabilisticClassifier (class in quapy.classification.calibration)</a> <li><a href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifier">RecalibratedProbabilisticClassifier (class in quapy.classification.calibration)</a>
</li> </li>
<li><a href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase">RecalibratedProbabilisticClassifierBase (class in quapy.classification.calibration)</a> <li><a href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase">RecalibratedProbabilisticClassifierBase (class in quapy.classification.calibration)</a>
</li>
<li><a href="quapy.data.html#quapy.data.base.Dataset.reduce">reduce() (quapy.data.base.Dataset method)</a>
</li> </li>
</ul></td> </ul></td>
<td style="width: 33%; vertical-align: top;"><ul> <td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.data.html#quapy.data.base.Dataset.reduce">reduce() (quapy.data.base.Dataset method)</a>
</li>
<li><a href="quapy.data.html#quapy.data.preprocessing.reduce_columns">reduce_columns() (in module quapy.data.preprocessing)</a> <li><a href="quapy.data.html#quapy.data.preprocessing.reduce_columns">reduce_columns() (in module quapy.data.preprocessing)</a>
</li> </li>
<li><a href="quapy.data.html#quapy.data.reader.reindex_labels">reindex_labels() (in module quapy.data.reader)</a> <li><a href="quapy.data.html#quapy.data.reader.reindex_labels">reindex_labels() (in module quapy.data.reader)</a>
@ -1145,6 +1178,8 @@
<li><a href="quapy.html#quapy.protocol.UPP.sample">(quapy.protocol.UPP method)</a> <li><a href="quapy.html#quapy.protocol.UPP.sample">(quapy.protocol.UPP method)</a>
</li> </li>
</ul></li> </ul></li>
<li><a href="quapy.method.html#quapy.method.aggregative.BayesianCC.sample_from_posterior">sample_from_posterior() (quapy.method.aggregative.BayesianCC method)</a>
</li>
<li><a href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.samples_parameters">samples_parameters() (quapy.protocol.AbstractStochasticSeededProtocol method)</a> <li><a href="quapy.html#quapy.protocol.AbstractStochasticSeededProtocol.samples_parameters">samples_parameters() (quapy.protocol.AbstractStochasticSeededProtocol method)</a>
<ul> <ul>
@ -1193,7 +1228,13 @@
</li> </li>
<li><a href="quapy.html#quapy.error.smooth">smooth() (in module quapy.error)</a> <li><a href="quapy.html#quapy.error.smooth">smooth() (in module quapy.error)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.solve_adjustment">solve_adjustment() (quapy.method.aggregative.ACC class method)</a> <li><a href="quapy.html#quapy.functional.softmax">softmax() (in module quapy.functional)</a>
</li>
<li><a href="quapy.html#quapy.functional.solve_adjustment">solve_adjustment() (in module quapy.functional)</a>
</li>
<li><a href="quapy.html#quapy.functional.solve_adjustment_binary">solve_adjustment_binary() (in module quapy.functional)</a>
</li>
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.SOLVERS">SOLVERS (quapy.method.aggregative.ACC attribute)</a>
</li> </li>
<li><a href="quapy.data.html#quapy.data.base.LabelledCollection.split_random">split_random() (quapy.data.base.LabelledCollection method)</a> <li><a href="quapy.data.html#quapy.data.base.LabelledCollection.split_random">split_random() (quapy.data.base.LabelledCollection method)</a>
</li> </li>
@ -1210,6 +1251,8 @@
</li> </li>
</ul></li> </ul></li>
<li><a href="quapy.html#quapy.model_selection.Status">Status (class in quapy.model_selection)</a> <li><a href="quapy.html#quapy.model_selection.Status">Status (class in quapy.model_selection)</a>
</li>
<li><a href="quapy.method.html#quapy.method.non_aggregative.ReadMe.std_constrained_linear_ls">std_constrained_linear_ls() (quapy.method.non_aggregative.ReadMe method)</a>
</li> </li>
<li><a href="quapy.html#quapy.functional.strprev">strprev() (in module quapy.functional)</a> <li><a href="quapy.html#quapy.functional.strprev">strprev() (in module quapy.functional)</a>
</li> </li>
@ -1228,6 +1271,8 @@
<li><a href="quapy.method.html#quapy.method._threshold_optim.T50">T50 (class in quapy.method._threshold_optim)</a> <li><a href="quapy.method.html#quapy.method._threshold_optim.T50">T50 (class in quapy.method._threshold_optim)</a>
</li> </li>
<li><a href="quapy.html#quapy.util.temp_seed">temp_seed() (in module quapy.util)</a> <li><a href="quapy.html#quapy.util.temp_seed">temp_seed() (in module quapy.util)</a>
</li>
<li><a href="quapy.html#quapy.functional.ternary_search">ternary_search() (in module quapy.functional)</a>
</li> </li>
<li><a href="quapy.data.html#quapy.data.preprocessing.text2tfidf">text2tfidf() (in module quapy.data.preprocessing)</a> <li><a href="quapy.data.html#quapy.data.preprocessing.text2tfidf">text2tfidf() (in module quapy.data.preprocessing)</a>
</li> </li>
@ -1261,6 +1306,16 @@
<td style="width: 33%; vertical-align: top;"><ul> <td style="width: 33%; vertical-align: top;"><ul>
<li><a href="quapy.data.html#quapy.data.base.Dataset.train_test">train_test (quapy.data.base.Dataset property)</a> <li><a href="quapy.data.html#quapy.data.base.Dataset.train_test">train_test (quapy.data.base.Dataset property)</a>
</li> </li>
<li><a href="quapy.classification.html#quapy.classification.neural.CNNnet.training">training (quapy.classification.neural.CNNnet attribute)</a>
<ul>
<li><a href="quapy.classification.html#quapy.classification.neural.LSTMnet.training">(quapy.classification.neural.LSTMnet attribute)</a>
</li>
<li><a href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.training">(quapy.classification.neural.TextClassifierNet attribute)</a>
</li>
<li><a href="quapy.method.html#quapy.method._neural.QuaNetModule.training">(quapy.method._neural.QuaNetModule attribute)</a>
</li>
</ul></li>
<li><a href="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.transform">transform() (quapy.classification.methods.LowRankLogisticRegression method)</a> <li><a href="quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.transform">transform() (quapy.classification.methods.LowRankLogisticRegression method)</a>
<ul> <ul>

View File

@ -1,24 +1,24 @@
<!DOCTYPE html> <!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./"> <html class="writer-html5" lang="en">
<head> <head>
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" /> <meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Welcome to QuaPys documentation! &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title> <title>Welcome to QuaPys documentation! &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.9 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" /> <link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" /> <link rel="stylesheet" type="text/css" href="_static/css/theme.css" />
<!--[if lt IE 9]> <!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script> <script src="_static/js/html5shiv.min.js"></script>
<![endif]--> <![endif]-->
<script src="_static/jquery.js?v=5d32c60e"></script> <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script> <script src="_static/jquery.js"></script>
<script src="_static/documentation_options.js?v=22607128"></script> <script src="_static/underscore.js"></script>
<script src="_static/doctools.js?v=9a2dae69"></script> <script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script> <script src="_static/doctools.js"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> <script src="_static/sphinx_highlight.js"></script>
<script src="_static/js/theme.js"></script> <script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" /> <link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" /> <link rel="search" title="Search" href="search.html" />
@ -73,21 +73,21 @@
<div itemprop="articleBody"> <div itemprop="articleBody">
<section id="welcome-to-quapy-s-documentation"> <section id="welcome-to-quapy-s-documentation">
<h1>Welcome to QuaPys documentation!<a class="headerlink" href="#welcome-to-quapy-s-documentation" title="Link to this heading"></a></h1> <h1>Welcome to QuaPys documentation!<a class="headerlink" href="#welcome-to-quapy-s-documentation" title="Permalink to this heading"></a></h1>
<p>QuaPy is a Python-based open-source framework for quantification.</p> <p>QuaPy is a Python-based open-source framework for quantification.</p>
<p>This document contains the API of the modules included in QuaPy.</p> <p>This document contains the API of the modules included in QuaPy.</p>
<section id="installation"> <section id="installation">
<h2>Installation<a class="headerlink" href="#installation" title="Link to this heading"></a></h2> <h2>Installation<a class="headerlink" href="#installation" title="Permalink to this heading"></a></h2>
<p><cite>pip install quapy</cite></p> <p><cite>pip install quapy</cite></p>
</section> </section>
<section id="github"> <section id="github">
<h2>GitHub<a class="headerlink" href="#github" title="Link to this heading"></a></h2> <h2>GitHub<a class="headerlink" href="#github" title="Permalink to this heading"></a></h2>
<p>QuaPy is hosted in GitHub at <a class="reference external" href="https://github.com/HLT-ISTI/QuaPy">https://github.com/HLT-ISTI/QuaPy</a></p> <p>QuaPy is hosted in GitHub at <a class="reference external" href="https://github.com/HLT-ISTI/QuaPy">https://github.com/HLT-ISTI/QuaPy</a></p>
<div class="toctree-wrapper compound"> <div class="toctree-wrapper compound">
</div> </div>
</section> </section>
<section id="contents"> <section id="contents">
<h2>Contents<a class="headerlink" href="#contents" title="Link to this heading"></a></h2> <h2>Contents<a class="headerlink" href="#contents" title="Permalink to this heading"></a></h2>
<div class="toctree-wrapper compound"> <div class="toctree-wrapper compound">
<ul> <ul>
<li class="toctree-l1"><a class="reference internal" href="modules.html">quapy</a><ul> <li class="toctree-l1"><a class="reference internal" href="modules.html">quapy</a><ul>
@ -128,12 +128,14 @@
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet"><code class="docutils literal notranslate"><span class="pre">CNNnet</span></code></a><ul> <li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet"><code class="docutils literal notranslate"><span class="pre">CNNnet</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet.document_embedding"><code class="docutils literal notranslate"><span class="pre">CNNnet.document_embedding()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet.document_embedding"><code class="docutils literal notranslate"><span class="pre">CNNnet.document_embedding()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet.get_params"><code class="docutils literal notranslate"><span class="pre">CNNnet.get_params()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet.get_params"><code class="docutils literal notranslate"><span class="pre">CNNnet.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet.training"><code class="docutils literal notranslate"><span class="pre">CNNnet.training</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet.vocabulary_size"><code class="docutils literal notranslate"><span class="pre">CNNnet.vocabulary_size</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.CNNnet.vocabulary_size"><code class="docutils literal notranslate"><span class="pre">CNNnet.vocabulary_size</span></code></a></li>
</ul> </ul>
</li> </li>
<li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet"><code class="docutils literal notranslate"><span class="pre">LSTMnet</span></code></a><ul> <li class="toctree-l6"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet"><code class="docutils literal notranslate"><span class="pre">LSTMnet</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet.document_embedding"><code class="docutils literal notranslate"><span class="pre">LSTMnet.document_embedding()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet.document_embedding"><code class="docutils literal notranslate"><span class="pre">LSTMnet.document_embedding()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet.get_params"><code class="docutils literal notranslate"><span class="pre">LSTMnet.get_params()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet.get_params"><code class="docutils literal notranslate"><span class="pre">LSTMnet.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet.training"><code class="docutils literal notranslate"><span class="pre">LSTMnet.training</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet.vocabulary_size"><code class="docutils literal notranslate"><span class="pre">LSTMnet.vocabulary_size</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.LSTMnet.vocabulary_size"><code class="docutils literal notranslate"><span class="pre">LSTMnet.vocabulary_size</span></code></a></li>
</ul> </ul>
</li> </li>
@ -154,6 +156,7 @@
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.forward"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.forward()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.forward"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.forward()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.get_params"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.get_params()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.get_params"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.get_params()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.predict_proba"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.predict_proba()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.predict_proba"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.predict_proba()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.training"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.training</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.vocabulary_size"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.vocabulary_size</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.vocabulary_size"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.vocabulary_size</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.xavier_uniform"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.xavier_uniform()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.xavier_uniform"><code class="docutils literal notranslate"><span class="pre">TextClassifierNet.xavier_uniform()</span></code></a></li>
</ul> </ul>
@ -260,10 +263,13 @@
<li class="toctree-l5"><a class="reference internal" href="quapy.method.html#submodules">Submodules</a></li> <li class="toctree-l5"><a class="reference internal" href="quapy.method.html#submodules">Submodules</a></li>
<li class="toctree-l5"><a class="reference internal" href="quapy.method.html#module-quapy.method.aggregative">quapy.method.aggregative module</a><ul> <li class="toctree-l5"><a class="reference internal" href="quapy.method.html#module-quapy.method.aggregative">quapy.method.aggregative module</a><ul>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC"><code class="docutils literal notranslate"><span class="pre">ACC</span></code></a><ul> <li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC"><code class="docutils literal notranslate"><span class="pre">ACC</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.METHODS"><code class="docutils literal notranslate"><span class="pre">ACC.METHODS</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.NORMALIZATIONS"><code class="docutils literal notranslate"><span class="pre">ACC.NORMALIZATIONS</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.SOLVERS"><code class="docutils literal notranslate"><span class="pre">ACC.SOLVERS</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.aggregate"><code class="docutils literal notranslate"><span class="pre">ACC.aggregate()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.aggregate"><code class="docutils literal notranslate"><span class="pre">ACC.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">ACC.aggregation_fit()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">ACC.aggregation_fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.getPteCondEstim"><code class="docutils literal notranslate"><span class="pre">ACC.getPteCondEstim()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.getPteCondEstim"><code class="docutils literal notranslate"><span class="pre">ACC.getPteCondEstim()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.solve_adjustment"><code class="docutils literal notranslate"><span class="pre">ACC.solve_adjustment()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.ACC.newInvariantRatioEstimation"><code class="docutils literal notranslate"><span class="pre">ACC.newInvariantRatioEstimation()</span></code></a></li>
</ul> </ul>
</li> </li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AdjustedClassifyAndCount"><code class="docutils literal notranslate"><span class="pre">AdjustedClassifyAndCount</span></code></a></li> <li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AdjustedClassifyAndCount"><code class="docutils literal notranslate"><span class="pre">AdjustedClassifyAndCount</span></code></a></li>
@ -289,6 +295,14 @@
</ul> </ul>
</li> </li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeSoftQuantifier"><code class="docutils literal notranslate"><span class="pre">AggregativeSoftQuantifier</span></code></a></li> <li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.AggregativeSoftQuantifier"><code class="docutils literal notranslate"><span class="pre">AggregativeSoftQuantifier</span></code></a></li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BayesianCC"><code class="docutils literal notranslate"><span class="pre">BayesianCC</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BayesianCC.aggregate"><code class="docutils literal notranslate"><span class="pre">BayesianCC.aggregate()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BayesianCC.aggregation_fit"><code class="docutils literal notranslate"><span class="pre">BayesianCC.aggregation_fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BayesianCC.get_conditional_probability_samples"><code class="docutils literal notranslate"><span class="pre">BayesianCC.get_conditional_probability_samples()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BayesianCC.get_prevalence_samples"><code class="docutils literal notranslate"><span class="pre">BayesianCC.get_prevalence_samples()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BayesianCC.sample_from_posterior"><code class="docutils literal notranslate"><span class="pre">BayesianCC.sample_from_posterior()</span></code></a></li>
</ul>
</li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier"><code class="docutils literal notranslate"><span class="pre">BinaryAggregativeQuantifier</span></code></a><ul> <li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier"><code class="docutils literal notranslate"><span class="pre">BinaryAggregativeQuantifier</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier.fit"><code class="docutils literal notranslate"><span class="pre">BinaryAggregativeQuantifier.fit()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier.fit"><code class="docutils literal notranslate"><span class="pre">BinaryAggregativeQuantifier.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier.neg_label"><code class="docutils literal notranslate"><span class="pre">BinaryAggregativeQuantifier.neg_label</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.aggregative.BinaryAggregativeQuantifier.neg_label"><code class="docutils literal notranslate"><span class="pre">BinaryAggregativeQuantifier.neg_label</span></code></a></li>
@ -385,6 +399,7 @@
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetModule"><code class="docutils literal notranslate"><span class="pre">QuaNetModule</span></code></a><ul> <li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetModule"><code class="docutils literal notranslate"><span class="pre">QuaNetModule</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetModule.device"><code class="docutils literal notranslate"><span class="pre">QuaNetModule.device</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetModule.device"><code class="docutils literal notranslate"><span class="pre">QuaNetModule.device</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetModule.forward"><code class="docutils literal notranslate"><span class="pre">QuaNetModule.forward()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetModule.forward"><code class="docutils literal notranslate"><span class="pre">QuaNetModule.forward()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetModule.training"><code class="docutils literal notranslate"><span class="pre">QuaNetModule.training</span></code></a></li>
</ul> </ul>
</li> </li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetTrainer"><code class="docutils literal notranslate"><span class="pre">QuaNetTrainer</span></code></a><ul> <li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method._neural.QuaNetTrainer"><code class="docutils literal notranslate"><span class="pre">QuaNetTrainer</span></code></a><ul>
@ -494,6 +509,12 @@
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.quantify"><code class="docutils literal notranslate"><span class="pre">MaximumLikelihoodPrevalenceEstimation.quantify()</span></code></a></li> <li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.quantify"><code class="docutils literal notranslate"><span class="pre">MaximumLikelihoodPrevalenceEstimation.quantify()</span></code></a></li>
</ul> </ul>
</li> </li>
<li class="toctree-l6"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.ReadMe"><code class="docutils literal notranslate"><span class="pre">ReadMe</span></code></a><ul>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.ReadMe.fit"><code class="docutils literal notranslate"><span class="pre">ReadMe.fit()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.ReadMe.quantify"><code class="docutils literal notranslate"><span class="pre">ReadMe.quantify()</span></code></a></li>
<li class="toctree-l7"><a class="reference internal" href="quapy.method.html#quapy.method.non_aggregative.ReadMe.std_constrained_linear_ls"><code class="docutils literal notranslate"><span class="pre">ReadMe.std_constrained_linear_ls()</span></code></a></li>
</ul>
</li>
</ul> </ul>
</li> </li>
<li class="toctree-l5"><a class="reference internal" href="quapy.method.html#module-quapy.method">Module contents</a></li> <li class="toctree-l5"><a class="reference internal" href="quapy.method.html#module-quapy.method">Module contents</a></li>
@ -543,12 +564,15 @@
<li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.functional">quapy.functional module</a><ul> <li class="toctree-l3"><a class="reference internal" href="quapy.html#module-quapy.functional">quapy.functional module</a><ul>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.HellingerDistance"><code class="docutils literal notranslate"><span class="pre">HellingerDistance()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.HellingerDistance"><code class="docutils literal notranslate"><span class="pre">HellingerDistance()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.TopsoeDistance"><code class="docutils literal notranslate"><span class="pre">TopsoeDistance()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.TopsoeDistance"><code class="docutils literal notranslate"><span class="pre">TopsoeDistance()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.adjusted_quantification"><code class="docutils literal notranslate"><span class="pre">adjusted_quantification()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.argmin_prevalence"><code class="docutils literal notranslate"><span class="pre">argmin_prevalence()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.argmin_prevalence"><code class="docutils literal notranslate"><span class="pre">argmin_prevalence()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.as_binary_prevalence"><code class="docutils literal notranslate"><span class="pre">as_binary_prevalence()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.as_binary_prevalence"><code class="docutils literal notranslate"><span class="pre">as_binary_prevalence()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.check_prevalence_vector"><code class="docutils literal notranslate"><span class="pre">check_prevalence_vector()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.check_prevalence_vector"><code class="docutils literal notranslate"><span class="pre">check_prevalence_vector()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.clip"><code class="docutils literal notranslate"><span class="pre">clip()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.condsoftmax"><code class="docutils literal notranslate"><span class="pre">condsoftmax()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.counts_from_labels"><code class="docutils literal notranslate"><span class="pre">counts_from_labels()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.get_divergence"><code class="docutils literal notranslate"><span class="pre">get_divergence()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.get_divergence"><code class="docutils literal notranslate"><span class="pre">get_divergence()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.get_nprevpoints_approximation"><code class="docutils literal notranslate"><span class="pre">get_nprevpoints_approximation()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.get_nprevpoints_approximation"><code class="docutils literal notranslate"><span class="pre">get_nprevpoints_approximation()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.l1_norm"><code class="docutils literal notranslate"><span class="pre">l1_norm()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.linear_search"><code class="docutils literal notranslate"><span class="pre">linear_search()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.linear_search"><code class="docutils literal notranslate"><span class="pre">linear_search()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.normalize_prevalence"><code class="docutils literal notranslate"><span class="pre">normalize_prevalence()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.normalize_prevalence"><code class="docutils literal notranslate"><span class="pre">normalize_prevalence()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.num_prevalence_combinations"><code class="docutils literal notranslate"><span class="pre">num_prevalence_combinations()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.num_prevalence_combinations"><code class="docutils literal notranslate"><span class="pre">num_prevalence_combinations()</span></code></a></li>
@ -556,7 +580,12 @@
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_from_labels"><code class="docutils literal notranslate"><span class="pre">prevalence_from_labels()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_from_labels"><code class="docutils literal notranslate"><span class="pre">prevalence_from_labels()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_from_probabilities"><code class="docutils literal notranslate"><span class="pre">prevalence_from_probabilities()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_from_probabilities"><code class="docutils literal notranslate"><span class="pre">prevalence_from_probabilities()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_linspace"><code class="docutils literal notranslate"><span class="pre">prevalence_linspace()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_linspace"><code class="docutils literal notranslate"><span class="pre">prevalence_linspace()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.projection_simplex_sort"><code class="docutils literal notranslate"><span class="pre">projection_simplex_sort()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.softmax"><code class="docutils literal notranslate"><span class="pre">softmax()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.solve_adjustment"><code class="docutils literal notranslate"><span class="pre">solve_adjustment()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.solve_adjustment_binary"><code class="docutils literal notranslate"><span class="pre">solve_adjustment_binary()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.strprev"><code class="docutils literal notranslate"><span class="pre">strprev()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.strprev"><code class="docutils literal notranslate"><span class="pre">strprev()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.ternary_search"><code class="docutils literal notranslate"><span class="pre">ternary_search()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.uniform_prevalence_sampling"><code class="docutils literal notranslate"><span class="pre">uniform_prevalence_sampling()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.uniform_prevalence_sampling"><code class="docutils literal notranslate"><span class="pre">uniform_prevalence_sampling()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.uniform_simplex_sampling"><code class="docutils literal notranslate"><span class="pre">uniform_simplex_sampling()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.functional.uniform_simplex_sampling"><code class="docutils literal notranslate"><span class="pre">uniform_simplex_sampling()</span></code></a></li>
</ul> </ul>
@ -657,6 +686,7 @@
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.get_quapy_home"><code class="docutils literal notranslate"><span class="pre">get_quapy_home()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.get_quapy_home"><code class="docutils literal notranslate"><span class="pre">get_quapy_home()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.map_parallel"><code class="docutils literal notranslate"><span class="pre">map_parallel()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.map_parallel"><code class="docutils literal notranslate"><span class="pre">map_parallel()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.parallel"><code class="docutils literal notranslate"><span class="pre">parallel()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.parallel"><code class="docutils literal notranslate"><span class="pre">parallel()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.parallel_unpack"><code class="docutils literal notranslate"><span class="pre">parallel_unpack()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.pickled_resource"><code class="docutils literal notranslate"><span class="pre">pickled_resource()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.pickled_resource"><code class="docutils literal notranslate"><span class="pre">pickled_resource()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.save_text_file"><code class="docutils literal notranslate"><span class="pre">save_text_file()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.save_text_file"><code class="docutils literal notranslate"><span class="pre">save_text_file()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.temp_seed"><code class="docutils literal notranslate"><span class="pre">temp_seed()</span></code></a></li> <li class="toctree-l4"><a class="reference internal" href="quapy.html#quapy.util.temp_seed"><code class="docutils literal notranslate"><span class="pre">temp_seed()</span></code></a></li>
@ -673,7 +703,7 @@
</section> </section>
</section> </section>
<section id="indices-and-tables"> <section id="indices-and-tables">
<h1>Indices and tables<a class="headerlink" href="#indices-and-tables" title="Link to this heading"></a></h1> <h1>Indices and tables<a class="headerlink" href="#indices-and-tables" title="Permalink to this heading"></a></h1>
<ul class="simple"> <ul class="simple">
<li><p><a class="reference internal" href="genindex.html"><span class="std std-ref">Index</span></a></p></li> <li><p><a class="reference internal" href="genindex.html"><span class="std std-ref">Index</span></a></p></li>
<li><p><a class="reference internal" href="py-modindex.html"><span class="std std-ref">Module Index</span></a></p></li> <li><p><a class="reference internal" href="py-modindex.html"><span class="std std-ref">Module Index</span></a></p></li>

View File

@ -1,24 +1,24 @@
<!DOCTYPE html> <!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./"> <html class="writer-html5" lang="en">
<head> <head>
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" /> <meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>quapy &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title> <title>quapy &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.9 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" /> <link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" /> <link rel="stylesheet" type="text/css" href="_static/css/theme.css" />
<!--[if lt IE 9]> <!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script> <script src="_static/js/html5shiv.min.js"></script>
<![endif]--> <![endif]-->
<script src="_static/jquery.js?v=5d32c60e"></script> <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script> <script src="_static/jquery.js"></script>
<script src="_static/documentation_options.js?v=22607128"></script> <script src="_static/underscore.js"></script>
<script src="_static/doctools.js?v=9a2dae69"></script> <script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script> <script src="_static/doctools.js"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> <script src="_static/sphinx_highlight.js"></script>
<script src="_static/js/theme.js"></script> <script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" /> <link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" /> <link rel="search" title="Search" href="search.html" />
@ -77,7 +77,7 @@
<div itemprop="articleBody"> <div itemprop="articleBody">
<section id="quapy"> <section id="quapy">
<h1>quapy<a class="headerlink" href="#quapy" title="Link to this heading"></a></h1> <h1>quapy<a class="headerlink" href="#quapy" title="Permalink to this heading"></a></h1>
<div class="toctree-wrapper compound"> <div class="toctree-wrapper compound">
<ul> <ul>
<li class="toctree-l1"><a class="reference internal" href="quapy.html">quapy package</a><ul> <li class="toctree-l1"><a class="reference internal" href="quapy.html">quapy package</a><ul>
@ -153,12 +153,15 @@
<li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.functional">quapy.functional module</a><ul> <li class="toctree-l2"><a class="reference internal" href="quapy.html#module-quapy.functional">quapy.functional module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.HellingerDistance"><code class="docutils literal notranslate"><span class="pre">HellingerDistance()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.HellingerDistance"><code class="docutils literal notranslate"><span class="pre">HellingerDistance()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.TopsoeDistance"><code class="docutils literal notranslate"><span class="pre">TopsoeDistance()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.TopsoeDistance"><code class="docutils literal notranslate"><span class="pre">TopsoeDistance()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.adjusted_quantification"><code class="docutils literal notranslate"><span class="pre">adjusted_quantification()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.argmin_prevalence"><code class="docutils literal notranslate"><span class="pre">argmin_prevalence()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.argmin_prevalence"><code class="docutils literal notranslate"><span class="pre">argmin_prevalence()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.as_binary_prevalence"><code class="docutils literal notranslate"><span class="pre">as_binary_prevalence()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.as_binary_prevalence"><code class="docutils literal notranslate"><span class="pre">as_binary_prevalence()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.check_prevalence_vector"><code class="docutils literal notranslate"><span class="pre">check_prevalence_vector()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.check_prevalence_vector"><code class="docutils literal notranslate"><span class="pre">check_prevalence_vector()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.clip"><code class="docutils literal notranslate"><span class="pre">clip()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.condsoftmax"><code class="docutils literal notranslate"><span class="pre">condsoftmax()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.counts_from_labels"><code class="docutils literal notranslate"><span class="pre">counts_from_labels()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.get_divergence"><code class="docutils literal notranslate"><span class="pre">get_divergence()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.get_divergence"><code class="docutils literal notranslate"><span class="pre">get_divergence()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.get_nprevpoints_approximation"><code class="docutils literal notranslate"><span class="pre">get_nprevpoints_approximation()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.get_nprevpoints_approximation"><code class="docutils literal notranslate"><span class="pre">get_nprevpoints_approximation()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.l1_norm"><code class="docutils literal notranslate"><span class="pre">l1_norm()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.linear_search"><code class="docutils literal notranslate"><span class="pre">linear_search()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.linear_search"><code class="docutils literal notranslate"><span class="pre">linear_search()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.normalize_prevalence"><code class="docutils literal notranslate"><span class="pre">normalize_prevalence()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.normalize_prevalence"><code class="docutils literal notranslate"><span class="pre">normalize_prevalence()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.num_prevalence_combinations"><code class="docutils literal notranslate"><span class="pre">num_prevalence_combinations()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.num_prevalence_combinations"><code class="docutils literal notranslate"><span class="pre">num_prevalence_combinations()</span></code></a></li>
@ -166,7 +169,12 @@
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_from_labels"><code class="docutils literal notranslate"><span class="pre">prevalence_from_labels()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_from_labels"><code class="docutils literal notranslate"><span class="pre">prevalence_from_labels()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_from_probabilities"><code class="docutils literal notranslate"><span class="pre">prevalence_from_probabilities()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_from_probabilities"><code class="docutils literal notranslate"><span class="pre">prevalence_from_probabilities()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_linspace"><code class="docutils literal notranslate"><span class="pre">prevalence_linspace()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.prevalence_linspace"><code class="docutils literal notranslate"><span class="pre">prevalence_linspace()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.projection_simplex_sort"><code class="docutils literal notranslate"><span class="pre">projection_simplex_sort()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.softmax"><code class="docutils literal notranslate"><span class="pre">softmax()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.solve_adjustment"><code class="docutils literal notranslate"><span class="pre">solve_adjustment()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.solve_adjustment_binary"><code class="docutils literal notranslate"><span class="pre">solve_adjustment_binary()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.strprev"><code class="docutils literal notranslate"><span class="pre">strprev()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.strprev"><code class="docutils literal notranslate"><span class="pre">strprev()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.ternary_search"><code class="docutils literal notranslate"><span class="pre">ternary_search()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.uniform_prevalence_sampling"><code class="docutils literal notranslate"><span class="pre">uniform_prevalence_sampling()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.uniform_prevalence_sampling"><code class="docutils literal notranslate"><span class="pre">uniform_prevalence_sampling()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.uniform_simplex_sampling"><code class="docutils literal notranslate"><span class="pre">uniform_simplex_sampling()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.functional.uniform_simplex_sampling"><code class="docutils literal notranslate"><span class="pre">uniform_simplex_sampling()</span></code></a></li>
</ul> </ul>
@ -267,6 +275,7 @@
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.get_quapy_home"><code class="docutils literal notranslate"><span class="pre">get_quapy_home()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.get_quapy_home"><code class="docutils literal notranslate"><span class="pre">get_quapy_home()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.map_parallel"><code class="docutils literal notranslate"><span class="pre">map_parallel()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.map_parallel"><code class="docutils literal notranslate"><span class="pre">map_parallel()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.parallel"><code class="docutils literal notranslate"><span class="pre">parallel()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.parallel"><code class="docutils literal notranslate"><span class="pre">parallel()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.parallel_unpack"><code class="docutils literal notranslate"><span class="pre">parallel_unpack()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.pickled_resource"><code class="docutils literal notranslate"><span class="pre">pickled_resource()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.pickled_resource"><code class="docutils literal notranslate"><span class="pre">pickled_resource()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.save_text_file"><code class="docutils literal notranslate"><span class="pre">save_text_file()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.save_text_file"><code class="docutils literal notranslate"><span class="pre">save_text_file()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.temp_seed"><code class="docutils literal notranslate"><span class="pre">temp_seed()</span></code></a></li> <li class="toctree-l3"><a class="reference internal" href="quapy.html#quapy.util.temp_seed"><code class="docutils literal notranslate"><span class="pre">temp_seed()</span></code></a></li>

Binary file not shown.

View File

@ -1,22 +1,23 @@
<!DOCTYPE html> <!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./"> <html class="writer-html5" lang="en">
<head> <head>
<meta charset="utf-8" /> <meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Python Module Index &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title> <title>Python Module Index &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.9 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" /> <link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" /> <link rel="stylesheet" type="text/css" href="_static/css/theme.css" />
<!--[if lt IE 9]> <!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script> <script src="_static/js/html5shiv.min.js"></script>
<![endif]--> <![endif]-->
<script src="_static/jquery.js?v=5d32c60e"></script> <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script> <script src="_static/jquery.js"></script>
<script src="_static/documentation_options.js?v=22607128"></script> <script src="_static/underscore.js"></script>
<script src="_static/doctools.js?v=9a2dae69"></script> <script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script> <script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/js/theme.js"></script> <script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" /> <link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" /> <link rel="search" title="Search" href="search.html" />

View File

@ -1,23 +1,24 @@
<!DOCTYPE html> <!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./"> <html class="writer-html5" lang="en">
<head> <head>
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" /> <meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>quapy.classification package &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title> <title>quapy.classification package &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.9 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" /> <link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" /> <link rel="stylesheet" type="text/css" href="_static/css/theme.css" />
<!--[if lt IE 9]> <!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script> <script src="_static/js/html5shiv.min.js"></script>
<![endif]--> <![endif]-->
<script src="_static/jquery.js?v=5d32c60e"></script> <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script> <script src="_static/jquery.js"></script>
<script src="_static/documentation_options.js?v=22607128"></script> <script src="_static/underscore.js"></script>
<script src="_static/doctools.js?v=9a2dae69"></script> <script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script> <script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/js/theme.js"></script> <script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" /> <link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" /> <link rel="search" title="Search" href="search.html" />
@ -95,15 +96,15 @@
<div itemprop="articleBody"> <div itemprop="articleBody">
<section id="quapy-classification-package"> <section id="quapy-classification-package">
<h1>quapy.classification package<a class="headerlink" href="#quapy-classification-package" title="Link to this heading"></a></h1> <h1>quapy.classification package<a class="headerlink" href="#quapy-classification-package" title="Permalink to this heading"></a></h1>
<section id="submodules"> <section id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Link to this heading"></a></h2> <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this heading"></a></h2>
</section> </section>
<section id="module-quapy.classification.calibration"> <section id="module-quapy.classification.calibration">
<span id="quapy-classification-calibration-module"></span><h2>quapy.classification.calibration module<a class="headerlink" href="#module-quapy.classification.calibration" title="Link to this heading"></a></h2> <span id="quapy-classification-calibration-module"></span><h2>quapy.classification.calibration module<a class="headerlink" href="#module-quapy.classification.calibration" title="Permalink to this heading"></a></h2>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.calibration.BCTSCalibration"> <dt class="sig sig-object py" id="quapy.classification.calibration.BCTSCalibration">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">BCTSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#BCTSCalibration"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.BCTSCalibration" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">BCTSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#BCTSCalibration"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.BCTSCalibration" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a></p> <dd><p>Bases: <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a></p>
<p>Applies the Bias-Corrected Temperature Scaling (BCTS) calibration method from <cite>abstention.calibration</cite>, as defined in <p>Applies the Bias-Corrected Temperature Scaling (BCTS) calibration method from <cite>abstention.calibration</cite>, as defined in
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p> <a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p>
@ -124,7 +125,7 @@ training set afterwards. Default value is 5.</p></li>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.calibration.NBVSCalibration"> <dt class="sig sig-object py" id="quapy.classification.calibration.NBVSCalibration">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">NBVSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#NBVSCalibration"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.NBVSCalibration" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">NBVSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#NBVSCalibration"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.NBVSCalibration" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a></p> <dd><p>Bases: <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a></p>
<p>Applies the No-Bias Vector Scaling (NBVS) calibration method from <cite>abstention.calibration</cite>, as defined in <p>Applies the No-Bias Vector Scaling (NBVS) calibration method from <cite>abstention.calibration</cite>, as defined in
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p> <a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p>
@ -145,7 +146,7 @@ training set afterwards. Default value is 5.</p></li>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifier"> <dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifier">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">RecalibratedProbabilisticClassifier</span></span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifier"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifier" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">RecalibratedProbabilisticClassifier</span></span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifier"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifier" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p> <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<p>Abstract class for (re)calibration method from <cite>abstention.calibration</cite>, as defined in <p>Abstract class for (re)calibration method from <cite>abstention.calibration</cite>, as defined in
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari, A., Kundaje, A., &amp; Shrikumar, A. (2020, November). Maximum likelihood with bias-corrected calibration <a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari, A., Kundaje, A., &amp; Shrikumar, A. (2020, November). Maximum likelihood with bias-corrected calibration
@ -154,7 +155,7 @@ is hard-to-beat at label shift adaptation. In International Conference on Machin
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"> <dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">RecalibratedProbabilisticClassifierBase</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">calibrator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">RecalibratedProbabilisticClassifierBase</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">calibrator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">BaseEstimator</span></code>, <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifier" title="quapy.classification.calibration.RecalibratedProbabilisticClassifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifier</span></code></a></p> <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">BaseEstimator</span></code>, <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifier" title="quapy.classification.calibration.RecalibratedProbabilisticClassifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifier</span></code></a></p>
<p>Applies a (re)calibration method from <cite>abstention.calibration</cite>, as defined in <p>Applies a (re)calibration method from <cite>abstention.calibration</cite>, as defined in
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>.</p> <a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>.</p>
@ -174,7 +175,7 @@ training set afterwards. Default value is 5.</p></li>
</dl> </dl>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.classes_"> <dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.classes_">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.classes_" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.classes_" title="Permalink to this definition"></a></dt>
<dd><p>Returns the classes on which the classifier has been trained on</p> <dd><p>Returns the classes on which the classifier has been trained on</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -185,7 +186,7 @@ training set afterwards. Default value is 5.</p></li>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit"> <dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit">
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit" title="Permalink to this definition"></a></dt>
<dd><p>Fits the calibration for the probabilistic classifier.</p> <dd><p>Fits the calibration for the probabilistic classifier.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -202,7 +203,7 @@ training set afterwards. Default value is 5.</p></li>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_cv"> <dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_cv">
<span class="sig-name descname"><span class="pre">fit_cv</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.fit_cv"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_cv" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">fit_cv</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.fit_cv"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_cv" title="Permalink to this definition"></a></dt>
<dd><p>Fits the calibration in a cross-validation manner, i.e., it generates posterior probabilities for all <dd><p>Fits the calibration in a cross-validation manner, i.e., it generates posterior probabilities for all
training instances via cross-validation, and then retrains the classifier on all training instances. training instances via cross-validation, and then retrains the classifier on all training instances.
The posterior probabilities thus generated are used for calibrating the outputs of the classifier.</p> The posterior probabilities thus generated are used for calibrating the outputs of the classifier.</p>
@ -221,7 +222,7 @@ The posterior probabilities thus generated are used for calibrating the outputs
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_tr_val"> <dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_tr_val">
<span class="sig-name descname"><span class="pre">fit_tr_val</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.fit_tr_val"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_tr_val" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">fit_tr_val</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.fit_tr_val"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_tr_val" title="Permalink to this definition"></a></dt>
<dd><p>Fits the calibration in a train/val-split manner, i.e.t, it partitions the training instances into a <dd><p>Fits the calibration in a train/val-split manner, i.e.t, it partitions the training instances into a
training and a validation set, and then uses the training samples to learn classifier which is then used training and a validation set, and then uses the training samples to learn classifier which is then used
to generate posterior probabilities for the held-out validation data. These posteriors are used to calibrate to generate posterior probabilities for the held-out validation data. These posteriors are used to calibrate
@ -241,7 +242,7 @@ the classifier. The classifier is not retrained on the whole dataset.</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict"> <dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict">
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict" title="Permalink to this definition"></a></dt>
<dd><p>Predicts class labels for the data instances in <cite>X</cite></p> <dd><p>Predicts class labels for the data instances in <cite>X</cite></p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -255,7 +256,7 @@ the classifier. The classifier is not retrained on the whole dataset.</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict_proba"> <dt class="sig sig-object py" id="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict_proba">
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.predict_proba"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict_proba" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#RecalibratedProbabilisticClassifierBase.predict_proba"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.predict_proba" title="Permalink to this definition"></a></dt>
<dd><p>Generates posterior probabilities for the data instances in <cite>X</cite></p> <dd><p>Generates posterior probabilities for the data instances in <cite>X</cite></p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -271,7 +272,7 @@ the classifier. The classifier is not retrained on the whole dataset.</p>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.calibration.TSCalibration"> <dt class="sig sig-object py" id="quapy.classification.calibration.TSCalibration">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">TSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#TSCalibration"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.TSCalibration" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">TSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#TSCalibration"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.TSCalibration" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a></p> <dd><p>Bases: <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a></p>
<p>Applies the Temperature Scaling (TS) calibration method from <cite>abstention.calibration</cite>, as defined in <p>Applies the Temperature Scaling (TS) calibration method from <cite>abstention.calibration</cite>, as defined in
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p> <a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p>
@ -292,7 +293,7 @@ training set afterwards. Default value is 5.</p></li>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.calibration.VSCalibration"> <dt class="sig sig-object py" id="quapy.classification.calibration.VSCalibration">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">VSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#VSCalibration"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.VSCalibration" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.calibration.</span></span><span class="sig-name descname"><span class="pre">VSCalibration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/calibration.html#VSCalibration"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.calibration.VSCalibration" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a></p> <dd><p>Bases: <a class="reference internal" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase" title="quapy.classification.calibration.RecalibratedProbabilisticClassifierBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">RecalibratedProbabilisticClassifierBase</span></code></a></p>
<p>Applies the Vector Scaling (VS) calibration method from <cite>abstention.calibration</cite>, as defined in <p>Applies the Vector Scaling (VS) calibration method from <cite>abstention.calibration</cite>, as defined in
<a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p> <a class="reference external" href="http://proceedings.mlr.press/v119/alexandari20a.html">Alexandari et al. paper</a>:</p>
@ -313,10 +314,10 @@ training set afterwards. Default value is 5.</p></li>
</section> </section>
<section id="module-quapy.classification.methods"> <section id="module-quapy.classification.methods">
<span id="quapy-classification-methods-module"></span><h2>quapy.classification.methods module<a class="headerlink" href="#module-quapy.classification.methods" title="Link to this heading"></a></h2> <span id="quapy-classification-methods-module"></span><h2>quapy.classification.methods module<a class="headerlink" href="#module-quapy.classification.methods" title="Permalink to this heading"></a></h2>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression"> <dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.methods.</span></span><span class="sig-name descname"><span class="pre">LowRankLogisticRegression</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_components</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.methods.</span></span><span class="sig-name descname"><span class="pre">LowRankLogisticRegression</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_components</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">BaseEstimator</span></code></p> <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">BaseEstimator</span></code></p>
<p>An example of a classification method (i.e., an object that implements <cite>fit</cite>, <cite>predict</cite>, and <cite>predict_proba</cite>) <p>An example of a classification method (i.e., an object that implements <cite>fit</cite>, <cite>predict</cite>, and <cite>predict_proba</cite>)
that also generates embedded inputs (i.e., that implements <cite>transform</cite>), as those required for that also generates embedded inputs (i.e., that implements <cite>transform</cite>), as those required for
@ -335,7 +336,7 @@ while classification is performed using <code class="xref py py-class docutils l
</dl> </dl>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.fit"> <dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.fit">
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.fit" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.fit" title="Permalink to this definition"></a></dt>
<dd><p>Fit the model according to the given training data. The fit consists of <dd><p>Fit the model according to the given training data. The fit consists of
fitting <cite>TruncatedSVD</cite> and then <cite>LogisticRegression</cite> on the low-rank representation.</p> fitting <cite>TruncatedSVD</cite> and then <cite>LogisticRegression</cite> on the low-rank representation.</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -353,7 +354,7 @@ fitting <cite>TruncatedSVD</cite> and then <cite>LogisticRegression</cite> on th
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.get_params"> <dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.get_params">
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.get_params" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.get_params" title="Permalink to this definition"></a></dt>
<dd><p>Get hyper-parameters for this estimator.</p> <dd><p>Get hyper-parameters for this estimator.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -364,7 +365,7 @@ fitting <cite>TruncatedSVD</cite> and then <cite>LogisticRegression</cite> on th
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.predict"> <dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.predict">
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.predict" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.predict" title="Permalink to this definition"></a></dt>
<dd><p>Predicts labels for the instances <cite>X</cite> embedded into the low-rank space.</p> <dd><p>Predicts labels for the instances <cite>X</cite> embedded into the low-rank space.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -379,7 +380,7 @@ instances in <cite>X</cite></p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.predict_proba"> <dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.predict_proba">
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.predict_proba"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.predict_proba" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.predict_proba"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.predict_proba" title="Permalink to this definition"></a></dt>
<dd><p>Predicts posterior probabilities for the instances <cite>X</cite> embedded into the low-rank space.</p> <dd><p>Predicts posterior probabilities for the instances <cite>X</cite> embedded into the low-rank space.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -393,7 +394,7 @@ instances in <cite>X</cite></p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.set_params"> <dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.set_params">
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.set_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.set_params" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.set_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.set_params" title="Permalink to this definition"></a></dt>
<dd><p>Set the parameters of this estimator.</p> <dd><p>Set the parameters of this estimator.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -406,7 +407,7 @@ and eventually also <cite>n_components</cite> for <cite>TruncatedSVD</cite></p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.transform"> <dt class="sig sig-object py" id="quapy.classification.methods.LowRankLogisticRegression.transform">
<span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.transform" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/methods.html#LowRankLogisticRegression.transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.methods.LowRankLogisticRegression.transform" title="Permalink to this definition"></a></dt>
<dd><p>Returns the low-rank approximation of <cite>X</cite> with <cite>n_components</cite> dimensions, or <cite>X</cite> unaltered if <dd><p>Returns the low-rank approximation of <cite>X</cite> with <cite>n_components</cite> dimensions, or <cite>X</cite> unaltered if
<cite>n_components</cite> &gt;= <cite>X.shape[1]</cite>.</p> <cite>n_components</cite> &gt;= <cite>X.shape[1]</cite>.</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -423,10 +424,10 @@ and eventually also <cite>n_components</cite> for <cite>TruncatedSVD</cite></p>
</section> </section>
<section id="module-quapy.classification.neural"> <section id="module-quapy.classification.neural">
<span id="quapy-classification-neural-module"></span><h2>quapy.classification.neural module<a class="headerlink" href="#module-quapy.classification.neural" title="Link to this heading"></a></h2> <span id="quapy-classification-neural-module"></span><h2>quapy.classification.neural module<a class="headerlink" href="#module-quapy.classification.neural" title="Permalink to this heading"></a></h2>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.neural.CNNnet"> <dt class="sig sig-object py" id="quapy.classification.neural.CNNnet">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">CNNnet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vocabulary_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">embedding_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">256</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repr_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">kernel_heights</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[3,</span> <span class="pre">5,</span> <span class="pre">7]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">stride</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">padding</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">drop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#CNNnet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.CNNnet" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">CNNnet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vocabulary_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">embedding_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">256</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repr_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">kernel_heights</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[3,</span> <span class="pre">5,</span> <span class="pre">7]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">stride</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">padding</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">drop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#CNNnet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.CNNnet" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><code class="xref py py-class docutils literal notranslate"><span class="pre">TextClassifierNet</span></code></a></p> <dd><p>Bases: <a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><code class="xref py py-class docutils literal notranslate"><span class="pre">TextClassifierNet</span></code></a></p>
<p>An implementation of <a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.classification.neural.TextClassifierNet</span></code></a> based on <p>An implementation of <a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.classification.neural.TextClassifierNet</span></code></a> based on
Convolutional Neural Networks.</p> Convolutional Neural Networks.</p>
@ -448,7 +449,7 @@ consecutive tokens that each kernel covers</p></li>
</dl> </dl>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.CNNnet.document_embedding"> <dt class="sig sig-object py" id="quapy.classification.neural.CNNnet.document_embedding">
<span class="sig-name descname"><span class="pre">document_embedding</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#CNNnet.document_embedding"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.CNNnet.document_embedding" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">document_embedding</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#CNNnet.document_embedding"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.CNNnet.document_embedding" title="Permalink to this definition"></a></dt>
<dd><p>Embeds documents (i.e., performs the forward pass up to the <dd><p>Embeds documents (i.e., performs the forward pass up to the
next-to-last layer).</p> next-to-last layer).</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -466,7 +467,7 @@ dimensionality of the embedding</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.CNNnet.get_params"> <dt class="sig sig-object py" id="quapy.classification.neural.CNNnet.get_params">
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#CNNnet.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.CNNnet.get_params" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#CNNnet.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.CNNnet.get_params" title="Permalink to this definition"></a></dt>
<dd><p>Get hyper-parameters for this estimator</p> <dd><p>Get hyper-parameters for this estimator</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -475,9 +476,14 @@ dimensionality of the embedding</p>
</dl> </dl>
</dd></dl> </dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="quapy.classification.neural.CNNnet.training">
<span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">bool</span></em><a class="headerlink" href="#quapy.classification.neural.CNNnet.training" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.classification.neural.CNNnet.vocabulary_size"> <dt class="sig sig-object py" id="quapy.classification.neural.CNNnet.vocabulary_size">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.classification.neural.CNNnet.vocabulary_size" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.classification.neural.CNNnet.vocabulary_size" title="Permalink to this definition"></a></dt>
<dd><p>Return the size of the vocabulary</p> <dd><p>Return the size of the vocabulary</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -490,7 +496,7 @@ dimensionality of the embedding</p>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet"> <dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">LSTMnet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vocabulary_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">embedding_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">256</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repr_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_class_nlayers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">drop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#LSTMnet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.LSTMnet" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">LSTMnet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vocabulary_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">embedding_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">256</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repr_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_class_nlayers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">drop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#LSTMnet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.LSTMnet" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><code class="xref py py-class docutils literal notranslate"><span class="pre">TextClassifierNet</span></code></a></p> <dd><p>Bases: <a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><code class="xref py py-class docutils literal notranslate"><span class="pre">TextClassifierNet</span></code></a></p>
<p>An implementation of <a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.classification.neural.TextClassifierNet</span></code></a> based on <p>An implementation of <a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.classification.neural.TextClassifierNet</span></code></a> based on
Long Short Term Memory networks.</p> Long Short Term Memory networks.</p>
@ -509,7 +515,7 @@ Long Short Term Memory networks.</p>
</dl> </dl>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet.document_embedding"> <dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet.document_embedding">
<span class="sig-name descname"><span class="pre">document_embedding</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#LSTMnet.document_embedding"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.LSTMnet.document_embedding" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">document_embedding</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#LSTMnet.document_embedding"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.LSTMnet.document_embedding" title="Permalink to this definition"></a></dt>
<dd><p>Embeds documents (i.e., performs the forward pass up to the <dd><p>Embeds documents (i.e., performs the forward pass up to the
next-to-last layer).</p> next-to-last layer).</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -527,7 +533,7 @@ dimensionality of the embedding</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet.get_params"> <dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet.get_params">
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#LSTMnet.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.LSTMnet.get_params" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#LSTMnet.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.LSTMnet.get_params" title="Permalink to this definition"></a></dt>
<dd><p>Get hyper-parameters for this estimator</p> <dd><p>Get hyper-parameters for this estimator</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -536,9 +542,14 @@ dimensionality of the embedding</p>
</dl> </dl>
</dd></dl> </dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet.training">
<span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">bool</span></em><a class="headerlink" href="#quapy.classification.neural.LSTMnet.training" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet.vocabulary_size"> <dt class="sig sig-object py" id="quapy.classification.neural.LSTMnet.vocabulary_size">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.classification.neural.LSTMnet.vocabulary_size" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.classification.neural.LSTMnet.vocabulary_size" title="Permalink to this definition"></a></dt>
<dd><p>Return the size of the vocabulary</p> <dd><p>Return the size of the vocabulary</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -551,7 +562,7 @@ dimensionality of the embedding</p>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer"> <dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">NeuralClassifierTrainer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">net</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><span class="pre">TextClassifierNet</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">lr</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.001</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">weight_decay</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">patience</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epochs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">200</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">64</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size_test</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">512</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">padding_length</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">300</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'cuda'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpointpath</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'../checkpoint/classifier_net.dat'</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">NeuralClassifierTrainer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">net</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.classification.neural.TextClassifierNet" title="quapy.classification.neural.TextClassifierNet"><span class="pre">TextClassifierNet</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">lr</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.001</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">weight_decay</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">patience</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epochs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">200</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">64</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size_test</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">512</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">padding_length</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">300</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'cuda'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpointpath</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'../checkpoint/classifier_net.dat'</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p> <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<p>Trains a neural network for text classification.</p> <p>Trains a neural network for text classification.</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -574,7 +585,7 @@ according to the evaluation in the held-out validation split (default ../chec
</dl> </dl>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.device"> <dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.device">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">device</span></span><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.device" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">device</span></span><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.device" title="Permalink to this definition"></a></dt>
<dd><p>Gets the device in which the network is allocated</p> <dd><p>Gets the device in which the network is allocated</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -585,7 +596,7 @@ according to the evaluation in the held-out validation split (default ../chec
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.fit"> <dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.fit">
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.fit" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.fit" title="Permalink to this definition"></a></dt>
<dd><p>Fits the model according to the given training data.</p> <dd><p>Fits the model according to the given training data.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -603,7 +614,7 @@ according to the evaluation in the held-out validation split (default ../chec
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.get_params"> <dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.get_params">
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.get_params" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.get_params" title="Permalink to this definition"></a></dt>
<dd><p>Get hyper-parameters for this estimator</p> <dd><p>Get hyper-parameters for this estimator</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -614,7 +625,7 @@ according to the evaluation in the held-out validation split (default ../chec
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.predict"> <dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.predict">
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.predict" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.predict" title="Permalink to this definition"></a></dt>
<dd><p>Predicts labels for the instances</p> <dd><p>Predicts labels for the instances</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -629,7 +640,7 @@ instances in <cite>X</cite></p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.predict_proba"> <dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.predict_proba">
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.predict_proba"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.predict_proba" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.predict_proba"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.predict_proba" title="Permalink to this definition"></a></dt>
<dd><p>Predicts posterior probabilities for the instances</p> <dd><p>Predicts posterior probabilities for the instances</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -643,7 +654,7 @@ instances in <cite>X</cite></p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.reset_net_params"> <dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.reset_net_params">
<span class="sig-name descname"><span class="pre">reset_net_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vocab_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.reset_net_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.reset_net_params" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">reset_net_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vocab_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.reset_net_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.reset_net_params" title="Permalink to this definition"></a></dt>
<dd><p>Reinitialize the network parameters</p> <dd><p>Reinitialize the network parameters</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -657,7 +668,7 @@ instances in <cite>X</cite></p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.set_params"> <dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.set_params">
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.set_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.set_params" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.set_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.set_params" title="Permalink to this definition"></a></dt>
<dd><p>Set the parameters of this trainer and the learner it is training. <dd><p>Set the parameters of this trainer and the learner it is training.
In this current version, parameter names for the trainer and learner should In this current version, parameter names for the trainer and learner should
be disjoint.</p> be disjoint.</p>
@ -670,7 +681,7 @@ be disjoint.</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.transform"> <dt class="sig sig-object py" id="quapy.classification.neural.NeuralClassifierTrainer.transform">
<span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.transform" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#NeuralClassifierTrainer.transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.NeuralClassifierTrainer.transform" title="Permalink to this definition"></a></dt>
<dd><p>Returns the embeddings of the instances</p> <dd><p>Returns the embeddings of the instances</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -687,12 +698,12 @@ where <cite>embed_size</cite> is defined by the classification network</p>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet"> <dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">TextClassifierNet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">TextClassifierNet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code></p> <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code></p>
<p>Abstract Text classifier (<cite>torch.nn.Module</cite>)</p> <p>Abstract Text classifier (<cite>torch.nn.Module</cite>)</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.dimensions"> <dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.dimensions">
<span class="sig-name descname"><span class="pre">dimensions</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.dimensions"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.dimensions" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">dimensions</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.dimensions"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.dimensions" title="Permalink to this definition"></a></dt>
<dd><p>Gets the number of dimensions of the embedding space</p> <dd><p>Gets the number of dimensions of the embedding space</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -703,7 +714,7 @@ where <cite>embed_size</cite> is defined by the classification network</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.document_embedding"> <dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.document_embedding">
<em class="property"><span class="pre">abstract</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">document_embedding</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.document_embedding"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.document_embedding" title="Link to this definition"></a></dt> <em class="property"><span class="pre">abstract</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">document_embedding</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.document_embedding"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.document_embedding" title="Permalink to this definition"></a></dt>
<dd><p>Embeds documents (i.e., performs the forward pass up to the <dd><p>Embeds documents (i.e., performs the forward pass up to the
next-to-last layer).</p> next-to-last layer).</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -721,7 +732,7 @@ dimensionality of the embedding</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.forward"> <dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.forward">
<span class="sig-name descname"><span class="pre">forward</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.forward"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.forward" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">forward</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.forward"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.forward" title="Permalink to this definition"></a></dt>
<dd><p>Performs the forward pass.</p> <dd><p>Performs the forward pass.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -737,7 +748,7 @@ for each of the instances and classes</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.get_params"> <dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.get_params">
<em class="property"><span class="pre">abstract</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.get_params" title="Link to this definition"></a></dt> <em class="property"><span class="pre">abstract</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.get_params"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.get_params" title="Permalink to this definition"></a></dt>
<dd><p>Get hyper-parameters for this estimator</p> <dd><p>Get hyper-parameters for this estimator</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -748,7 +759,7 @@ for each of the instances and classes</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.predict_proba"> <dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.predict_proba">
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.predict_proba"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.predict_proba" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.predict_proba"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.predict_proba" title="Permalink to this definition"></a></dt>
<dd><p>Predicts posterior probabilities for the instances in <cite>x</cite></p> <dd><p>Predicts posterior probabilities for the instances in <cite>x</cite></p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -762,9 +773,14 @@ is length of the pad in the batch</p>
</dl> </dl>
</dd></dl> </dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.training">
<span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">bool</span></em><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.training" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.vocabulary_size"> <dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.vocabulary_size">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.vocabulary_size" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.vocabulary_size" title="Permalink to this definition"></a></dt>
<dd><p>Return the size of the vocabulary</p> <dd><p>Return the size of the vocabulary</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -775,7 +791,7 @@ is length of the pad in the batch</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.xavier_uniform"> <dt class="sig sig-object py" id="quapy.classification.neural.TextClassifierNet.xavier_uniform">
<span class="sig-name descname"><span class="pre">xavier_uniform</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.xavier_uniform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.xavier_uniform" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">xavier_uniform</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TextClassifierNet.xavier_uniform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TextClassifierNet.xavier_uniform" title="Permalink to this definition"></a></dt>
<dd><p>Performs Xavier initialization of the network parameters</p> <dd><p>Performs Xavier initialization of the network parameters</p>
</dd></dl> </dd></dl>
@ -783,7 +799,7 @@ is length of the pad in the batch</p>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.neural.TorchDataset"> <dt class="sig sig-object py" id="quapy.classification.neural.TorchDataset">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">TorchDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TorchDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TorchDataset" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.neural.</span></span><span class="sig-name descname"><span class="pre">TorchDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TorchDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TorchDataset" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Dataset</span></code></p> <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Dataset</span></code></p>
<p>Transforms labelled instances into a Torchs <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.utils.data.DataLoader</span></code> object</p> <p>Transforms labelled instances into a Torchs <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.utils.data.DataLoader</span></code> object</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -796,7 +812,7 @@ is length of the pad in the batch</p>
</dl> </dl>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.neural.TorchDataset.asDataloader"> <dt class="sig sig-object py" id="quapy.classification.neural.TorchDataset.asDataloader">
<span class="sig-name descname"><span class="pre">asDataloader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">batch_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pad_length</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TorchDataset.asDataloader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TorchDataset.asDataloader" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">asDataloader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">batch_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pad_length</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/neural.html#TorchDataset.asDataloader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.neural.TorchDataset.asDataloader" title="Permalink to this definition"></a></dt>
<dd><p>Converts the labelled collection into a Torch DataLoader with dynamic padding for <dd><p>Converts the labelled collection into a Torch DataLoader with dynamic padding for
the batch</p> the batch</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -820,10 +836,10 @@ applied, meaning that if the longest document in the batch is shorter than
</section> </section>
<section id="module-quapy.classification.svmperf"> <section id="module-quapy.classification.svmperf">
<span id="quapy-classification-svmperf-module"></span><h2>quapy.classification.svmperf module<a class="headerlink" href="#module-quapy.classification.svmperf" title="Link to this heading"></a></h2> <span id="quapy-classification-svmperf-module"></span><h2>quapy.classification.svmperf module<a class="headerlink" href="#module-quapy.classification.svmperf" title="Permalink to this heading"></a></h2>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf"> <dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.svmperf.</span></span><span class="sig-name descname"><span class="pre">SVMperf</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">svmperf_base</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">C</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.01</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loss</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'01'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">host_folder</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/svmperf.html#SVMperf"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.svmperf.SVMperf" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.classification.svmperf.</span></span><span class="sig-name descname"><span class="pre">SVMperf</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">svmperf_base</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">C</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.01</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loss</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'01'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">host_folder</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/svmperf.html#SVMperf"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.svmperf.SVMperf" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">BaseEstimator</span></code>, <code class="xref py py-class docutils literal notranslate"><span class="pre">ClassifierMixin</span></code></p> <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">BaseEstimator</span></code>, <code class="xref py py-class docutils literal notranslate"><span class="pre">ClassifierMixin</span></code></p>
<p>A wrapper for the <a class="reference external" href="https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html">SVM-perf package</a> by Thorsten Joachims. <p>A wrapper for the <a class="reference external" href="https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html">SVM-perf package</a> by Thorsten Joachims.
When using losses for quantification, the source code has to be patched. See When using losses for quantification, the source code has to be patched. See
@ -848,7 +864,7 @@ for further details.</p>
</dl> </dl>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf.decision_function"> <dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf.decision_function">
<span class="sig-name descname"><span class="pre">decision_function</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/svmperf.html#SVMperf.decision_function"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.decision_function" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">decision_function</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/svmperf.html#SVMperf.decision_function"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.decision_function" title="Permalink to this definition"></a></dt>
<dd><p>Evaluate the decision function for the samples in <cite>X</cite>.</p> <dd><p>Evaluate the decision function for the samples in <cite>X</cite>.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -865,7 +881,7 @@ for further details.</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf.fit"> <dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf.fit">
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/svmperf.html#SVMperf.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.fit" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/svmperf.html#SVMperf.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.fit" title="Permalink to this definition"></a></dt>
<dd><p>Trains the SVM for the multivariate performance loss</p> <dd><p>Trains the SVM for the multivariate performance loss</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -882,7 +898,7 @@ for further details.</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf.predict"> <dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf.predict">
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/svmperf.html#SVMperf.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.predict" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/classification/svmperf.html#SVMperf.predict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.predict" title="Permalink to this definition"></a></dt>
<dd><p>Predicts labels for the instances <cite>X</cite></p> <dd><p>Predicts labels for the instances <cite>X</cite></p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -897,14 +913,14 @@ instances in <cite>X</cite></p>
<dl class="py attribute"> <dl class="py attribute">
<dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf.valid_losses"> <dt class="sig sig-object py" id="quapy.classification.svmperf.SVMperf.valid_losses">
<span class="sig-name descname"><span class="pre">valid_losses</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">{'01':</span> <span class="pre">0,</span> <span class="pre">'f1':</span> <span class="pre">1,</span> <span class="pre">'kld':</span> <span class="pre">12,</span> <span class="pre">'mae':</span> <span class="pre">26,</span> <span class="pre">'mrae':</span> <span class="pre">27,</span> <span class="pre">'nkld':</span> <span class="pre">13,</span> <span class="pre">'q':</span> <span class="pre">22,</span> <span class="pre">'qacc':</span> <span class="pre">23,</span> <span class="pre">'qf1':</span> <span class="pre">24,</span> <span class="pre">'qgm':</span> <span class="pre">25}</span></em><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.valid_losses" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">valid_losses</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">{'01':</span> <span class="pre">0,</span> <span class="pre">'f1':</span> <span class="pre">1,</span> <span class="pre">'kld':</span> <span class="pre">12,</span> <span class="pre">'mae':</span> <span class="pre">26,</span> <span class="pre">'mrae':</span> <span class="pre">27,</span> <span class="pre">'nkld':</span> <span class="pre">13,</span> <span class="pre">'q':</span> <span class="pre">22,</span> <span class="pre">'qacc':</span> <span class="pre">23,</span> <span class="pre">'qf1':</span> <span class="pre">24,</span> <span class="pre">'qgm':</span> <span class="pre">25}</span></em><a class="headerlink" href="#quapy.classification.svmperf.SVMperf.valid_losses" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
</dd></dl> </dd></dl>
</section> </section>
<section id="module-quapy.classification"> <section id="module-quapy.classification">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-quapy.classification" title="Link to this heading"></a></h2> <span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-quapy.classification" title="Permalink to this heading"></a></h2>
</section> </section>
</section> </section>

View File

@ -1,23 +1,24 @@
<!DOCTYPE html> <!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./"> <html class="writer-html5" lang="en">
<head> <head>
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" /> <meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>quapy.data package &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title> <title>quapy.data package &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.9 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" /> <link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" /> <link rel="stylesheet" type="text/css" href="_static/css/theme.css" />
<!--[if lt IE 9]> <!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script> <script src="_static/js/html5shiv.min.js"></script>
<![endif]--> <![endif]-->
<script src="_static/jquery.js?v=5d32c60e"></script> <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script> <script src="_static/jquery.js"></script>
<script src="_static/documentation_options.js?v=22607128"></script> <script src="_static/underscore.js"></script>
<script src="_static/doctools.js?v=9a2dae69"></script> <script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script> <script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/js/theme.js"></script> <script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" /> <link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" /> <link rel="search" title="Search" href="search.html" />
@ -95,15 +96,15 @@
<div itemprop="articleBody"> <div itemprop="articleBody">
<section id="quapy-data-package"> <section id="quapy-data-package">
<h1>quapy.data package<a class="headerlink" href="#quapy-data-package" title="Link to this heading"></a></h1> <h1>quapy.data package<a class="headerlink" href="#quapy-data-package" title="Permalink to this heading"></a></h1>
<section id="submodules"> <section id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Link to this heading"></a></h2> <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this heading"></a></h2>
</section> </section>
<section id="module-quapy.data.base"> <section id="module-quapy.data.base">
<span id="quapy-data-base-module"></span><h2>quapy.data.base module<a class="headerlink" href="#module-quapy.data.base" title="Link to this heading"></a></h2> <span id="quapy-data-base-module"></span><h2>quapy.data.base module<a class="headerlink" href="#module-quapy.data.base" title="Permalink to this heading"></a></h2>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.data.base.Dataset"> <dt class="sig sig-object py" id="quapy.data.base.Dataset">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.base.</span></span><span class="sig-name descname"><span class="pre">Dataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">training</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">vocabulary</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">dict</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><span class="pre">None</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.base.</span></span><span class="sig-name descname"><span class="pre">Dataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">training</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">vocabulary</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">dict</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p> <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<p>Abstraction of training and test <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> objects.</p> <p>Abstraction of training and test <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> objects.</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -118,7 +119,7 @@
</dl> </dl>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.SplitStratified"> <dt class="sig sig-object py" id="quapy.data.base.Dataset.SplitStratified">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">SplitStratified</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">collection</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">train_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.6</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.SplitStratified"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.SplitStratified" title="Link to this definition"></a></dt> <em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">SplitStratified</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">collection</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">train_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.6</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.SplitStratified"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.SplitStratified" title="Permalink to this definition"></a></dt>
<dd><p>Generates a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">Dataset</span></code></a> from a stratified split of a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> instance. <dd><p>Generates a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">Dataset</span></code></a> from a stratified split of a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> instance.
See <a class="reference internal" href="#quapy.data.base.LabelledCollection.split_stratified" title="quapy.data.base.LabelledCollection.split_stratified"><code class="xref py py-meth docutils literal notranslate"><span class="pre">LabelledCollection.split_stratified()</span></code></a></p> See <a class="reference internal" href="#quapy.data.base.LabelledCollection.split_stratified" title="quapy.data.base.LabelledCollection.split_stratified"><code class="xref py py-meth docutils literal notranslate"><span class="pre">LabelledCollection.split_stratified()</span></code></a></p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -136,7 +137,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.spli
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.binary"> <dt class="sig sig-object py" id="quapy.data.base.Dataset.binary">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">binary</span></span><a class="headerlink" href="#quapy.data.base.Dataset.binary" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">binary</span></span><a class="headerlink" href="#quapy.data.base.Dataset.binary" title="Permalink to this definition"></a></dt>
<dd><p>Returns True if the training collection is labelled according to two classes</p> <dd><p>Returns True if the training collection is labelled according to two classes</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -147,7 +148,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.spli
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.classes_"> <dt class="sig sig-object py" id="quapy.data.base.Dataset.classes_">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.data.base.Dataset.classes_" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.data.base.Dataset.classes_" title="Permalink to this definition"></a></dt>
<dd><p>The classes according to which the training collection is labelled</p> <dd><p>The classes according to which the training collection is labelled</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -158,7 +159,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.spli
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.kFCV"> <dt class="sig sig-object py" id="quapy.data.base.Dataset.kFCV">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">kFCV</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">nfolds</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nrepeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.kFCV"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.kFCV" title="Link to this definition"></a></dt> <em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">kFCV</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">nfolds</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nrepeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.kFCV"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.kFCV" title="Permalink to this definition"></a></dt>
<dd><p>Generator of stratified folds to be used in k-fold cross validation. This function is only a wrapper around <dd><p>Generator of stratified folds to be used in k-fold cross validation. This function is only a wrapper around
<a class="reference internal" href="#quapy.data.base.LabelledCollection.kFCV" title="quapy.data.base.LabelledCollection.kFCV"><code class="xref py py-meth docutils literal notranslate"><span class="pre">LabelledCollection.kFCV()</span></code></a> that returns <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">Dataset</span></code></a> instances made of training and test folds.</p> <a class="reference internal" href="#quapy.data.base.LabelledCollection.kFCV" title="quapy.data.base.LabelledCollection.kFCV"><code class="xref py py-meth docutils literal notranslate"><span class="pre">LabelledCollection.kFCV()</span></code></a> that returns <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">Dataset</span></code></a> instances made of training and test folds.</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -177,7 +178,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.spli
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.load"> <dt class="sig sig-object py" id="quapy.data.base.Dataset.load">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">load</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loader_func</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">loader_kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.load"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.load" title="Link to this definition"></a></dt> <em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">load</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loader_func</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">loader_kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.load"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.load" title="Permalink to this definition"></a></dt>
<dd><p>Loads a training and a test labelled set of data and convert it into a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">Dataset</span></code></a> instance. <dd><p>Loads a training and a test labelled set of data and convert it into a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">Dataset</span></code></a> instance.
The function in charge of reading the instances must be specified. This function can be a custom one, or any of The function in charge of reading the instances must be specified. This function can be a custom one, or any of
the reading functions defined in <a class="reference internal" href="#module-quapy.data.reader" title="quapy.data.reader"><code class="xref py py-mod docutils literal notranslate"><span class="pre">quapy.data.reader</span></code></a> module.</p> the reading functions defined in <a class="reference internal" href="#module-quapy.data.reader" title="quapy.data.reader"><code class="xref py py-mod docutils literal notranslate"><span class="pre">quapy.data.reader</span></code></a> module.</p>
@ -201,7 +202,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.load
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.n_classes"> <dt class="sig sig-object py" id="quapy.data.base.Dataset.n_classes">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">n_classes</span></span><a class="headerlink" href="#quapy.data.base.Dataset.n_classes" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">n_classes</span></span><a class="headerlink" href="#quapy.data.base.Dataset.n_classes" title="Permalink to this definition"></a></dt>
<dd><p>The number of classes according to which the training collection is labelled</p> <dd><p>The number of classes according to which the training collection is labelled</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -212,7 +213,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.load
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.reduce"> <dt class="sig sig-object py" id="quapy.data.base.Dataset.reduce">
<span class="sig-name descname"><span class="pre">reduce</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_train</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_test</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.reduce"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.reduce" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">reduce</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_train</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_test</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.reduce"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.reduce" title="Permalink to this definition"></a></dt>
<dd><p>Reduce the number of instances in place for quick experiments. Preserves the prevalence of each set.</p> <dd><p>Reduce the number of instances in place for quick experiments. Preserves the prevalence of each set.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -229,7 +230,7 @@ See <a class="reference internal" href="#quapy.data.base.LabelledCollection.load
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.stats"> <dt class="sig sig-object py" id="quapy.data.base.Dataset.stats">
<span class="sig-name descname"><span class="pre">stats</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">show</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.stats"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.stats" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">stats</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">show</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#Dataset.stats"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.Dataset.stats" title="Permalink to this definition"></a></dt>
<dd><p>Returns (and eventually prints) a dictionary with some stats of this dataset. E.g.,:</p> <dd><p>Returns (and eventually prints) a dictionary with some stats of this dataset. E.g.,:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;kindle&#39;</span><span class="p">,</span> <span class="n">tfidf</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;kindle&#39;</span><span class="p">,</span> <span class="n">tfidf</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data</span><span class="o">.</span><span class="n">stats</span><span class="p">()</span> <span class="gp">&gt;&gt;&gt; </span><span class="n">data</span><span class="o">.</span><span class="n">stats</span><span class="p">()</span>
@ -252,7 +253,7 @@ the collection), <cite>prevs</cite> (the prevalence values for each class)</p>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.train_test"> <dt class="sig sig-object py" id="quapy.data.base.Dataset.train_test">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">train_test</span></span><a class="headerlink" href="#quapy.data.base.Dataset.train_test" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">train_test</span></span><a class="headerlink" href="#quapy.data.base.Dataset.train_test" title="Permalink to this definition"></a></dt>
<dd><p>Alias to <cite>self.training</cite> and <cite>self.test</cite></p> <dd><p>Alias to <cite>self.training</cite> and <cite>self.test</cite></p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -266,7 +267,7 @@ the collection), <cite>prevs</cite> (the prevalence values for each class)</p>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.Dataset.vocabulary_size"> <dt class="sig sig-object py" id="quapy.data.base.Dataset.vocabulary_size">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.data.base.Dataset.vocabulary_size" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">vocabulary_size</span></span><a class="headerlink" href="#quapy.data.base.Dataset.vocabulary_size" title="Permalink to this definition"></a></dt>
<dd><p>If the dataset is textual, and the vocabulary was indicated, returns the size of the vocabulary</p> <dd><p>If the dataset is textual, and the vocabulary was indicated, returns the size of the vocabulary</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -279,7 +280,7 @@ the collection), <cite>prevs</cite> (the prevalence values for each class)</p>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.base.</span></span><span class="sig-name descname"><span class="pre">LabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.base.</span></span><span class="sig-name descname"><span class="pre">LabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p> <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<p>A LabelledCollection is a set of objects each with a label attached to each of them. <p>A LabelledCollection is a set of objects each with a label attached to each of them.
This class implements several sampling routines and other utilities.</p> This class implements several sampling routines and other utilities.</p>
@ -296,7 +297,7 @@ from the labels. The classes must be indicated in cases in which some of the lab
</dl> </dl>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.X"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.X">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">X</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.X" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">X</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.X" title="Permalink to this definition"></a></dt>
<dd><p>An alias to self.instances</p> <dd><p>An alias to self.instances</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -307,7 +308,7 @@ from the labels. The classes must be indicated in cases in which some of the lab
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.Xp"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.Xp">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Xp</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.Xp" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Xp</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.Xp" title="Permalink to this definition"></a></dt>
<dd><p>Gets the instances and the true prevalence. This is useful when implementing evaluation protocols from <dd><p>Gets the instances and the true prevalence. This is useful when implementing evaluation protocols from
a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> object.</p> a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> object.</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -319,7 +320,7 @@ a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.Xy"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.Xy">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Xy</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.Xy" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Xy</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.Xy" title="Permalink to this definition"></a></dt>
<dd><p>Gets the instances and labels. This is useful when working with <cite>sklearn</cite> estimators, e.g.:</p> <dd><p>Gets the instances and labels. This is useful when working with <cite>sklearn</cite> estimators, e.g.:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">svm</span> <span class="o">=</span> <span class="n">LinearSVC</span><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="o">*</span><span class="n">my_collection</span><span class="o">.</span><span class="n">Xy</span><span class="p">)</span> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">svm</span> <span class="o">=</span> <span class="n">LinearSVC</span><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="o">*</span><span class="n">my_collection</span><span class="o">.</span><span class="n">Xy</span><span class="p">)</span>
</pre></div> </pre></div>
@ -333,7 +334,7 @@ a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.binary"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.binary">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">binary</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.binary" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">binary</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.binary" title="Permalink to this definition"></a></dt>
<dd><p>Returns True if the number of classes is 2</p> <dd><p>Returns True if the number of classes is 2</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -344,7 +345,7 @@ a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.counts"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.counts">
<span class="sig-name descname"><span class="pre">counts</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.counts"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.counts" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">counts</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.counts"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.counts" title="Permalink to this definition"></a></dt>
<dd><p>Returns the number of instances for each of the classes in the codeframe.</p> <dd><p>Returns the number of instances for each of the classes in the codeframe.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -356,7 +357,7 @@ as listed by <cite>self.classes_</cite></p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.join"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.join">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">join</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Iterable</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.join"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.join" title="Link to this definition"></a></dt> <em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">join</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Iterable</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a><span class="p"><span class="pre">]</span></span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.join"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.join" title="Permalink to this definition"></a></dt>
<dd><p>Returns a new <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> as the union of the collections given in input.</p> <dd><p>Returns a new <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> as the union of the collections given in input.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -370,7 +371,7 @@ as listed by <cite>self.classes_</cite></p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.kFCV"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.kFCV">
<span class="sig-name descname"><span class="pre">kFCV</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">nfolds</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nrepeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.kFCV"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.kFCV" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">kFCV</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">nfolds</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nrepeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.kFCV"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.kFCV" title="Permalink to this definition"></a></dt>
<dd><p>Generator of stratified folds to be used in k-fold cross validation.</p> <dd><p>Generator of stratified folds to be used in k-fold cross validation.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -388,7 +389,7 @@ as listed by <cite>self.classes_</cite></p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.load"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.load">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">load</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loader_func</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">loader_kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.load"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.load" title="Link to this definition"></a></dt> <em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">load</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loader_func</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">loader_kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.load"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.load" title="Permalink to this definition"></a></dt>
<dd><p>Loads a labelled set of data and convert it into a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> instance. The function in charge <dd><p>Loads a labelled set of data and convert it into a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> instance. The function in charge
of reading the instances must be specified. This function can be a custom one, or any of the reading functions of reading the instances must be specified. This function can be a custom one, or any of the reading functions
defined in <a class="reference internal" href="#module-quapy.data.reader" title="quapy.data.reader"><code class="xref py py-mod docutils literal notranslate"><span class="pre">quapy.data.reader</span></code></a> module.</p> defined in <a class="reference internal" href="#module-quapy.data.reader" title="quapy.data.reader"><code class="xref py py-mod docutils literal notranslate"><span class="pre">quapy.data.reader</span></code></a> module.</p>
@ -411,7 +412,7 @@ these arguments are used to call <cite>loader_func(path, **loader_kwargs)</cite>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.n_classes"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.n_classes">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">n_classes</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.n_classes" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">n_classes</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.n_classes" title="Permalink to this definition"></a></dt>
<dd><p>The number of classes</p> <dd><p>The number of classes</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -422,7 +423,7 @@ these arguments are used to call <cite>loader_func(path, **loader_kwargs)</cite>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.p"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.p">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">p</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.p" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">p</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.p" title="Permalink to this definition"></a></dt>
<dd><p>An alias to self.prevalence()</p> <dd><p>An alias to self.prevalence()</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -433,7 +434,7 @@ these arguments are used to call <cite>loader_func(path, **loader_kwargs)</cite>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.prevalence"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.prevalence">
<span class="sig-name descname"><span class="pre">prevalence</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.prevalence"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.prevalence" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">prevalence</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.prevalence"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.prevalence" title="Permalink to this definition"></a></dt>
<dd><p>Returns the prevalence, or relative frequency, of the classes in the codeframe.</p> <dd><p>Returns the prevalence, or relative frequency, of the classes in the codeframe.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -445,7 +446,7 @@ as listed by <cite>self.classes_</cite></p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.sampling"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.sampling">
<span class="sig-name descname"><span class="pre">sampling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">prevs</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.sampling"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">sampling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">prevs</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.sampling"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling" title="Permalink to this definition"></a></dt>
<dd><p>Return a random sample (an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a>) of desired size and desired prevalence <dd><p>Return a random sample (an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a>) of desired size and desired prevalence
values. For each class, the sampling is drawn without replacement if the requested prevalence is larger than values. For each class, the sampling is drawn without replacement if the requested prevalence is larger than
the actual prevalence of the class, or with replacement otherwise.</p> the actual prevalence of the class, or with replacement otherwise.</p>
@ -469,7 +470,7 @@ prevalence == <cite>prevs</cite> if the exact prevalence values can be met as pr
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.sampling_from_index"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.sampling_from_index">
<span class="sig-name descname"><span class="pre">sampling_from_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">index</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.sampling_from_index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling_from_index" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">sampling_from_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">index</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.sampling_from_index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling_from_index" title="Permalink to this definition"></a></dt>
<dd><p>Returns an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> whose elements are sampled from this collection using the <dd><p>Returns an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> whose elements are sampled from this collection using the
index.</p> index.</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -484,7 +485,7 @@ index.</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.sampling_index"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.sampling_index">
<span class="sig-name descname"><span class="pre">sampling_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">prevs</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.sampling_index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling_index" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">sampling_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">prevs</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.sampling_index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling_index" title="Permalink to this definition"></a></dt>
<dd><p>Returns an index to be used to extract a random sample of desired size and desired prevalence values. If the <dd><p>Returns an index to be used to extract a random sample of desired size and desired prevalence values. If the
prevalence values are not specified, then returns the index of a uniform sampling. prevalence values are not specified, then returns the index of a uniform sampling.
For each class, the sampling is drawn with replacement if the requested prevalence is larger than For each class, the sampling is drawn with replacement if the requested prevalence is larger than
@ -508,7 +509,7 @@ it is constrained. E.g., for binary collections, only the prevalence <cite>p</ci
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.split_random"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.split_random">
<span class="sig-name descname"><span class="pre">split_random</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_prop</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.6</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.split_random"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.split_random" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">split_random</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_prop</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.6</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.split_random"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.split_random" title="Permalink to this definition"></a></dt>
<dd><p>Returns two instances of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> split randomly from this collection, at desired <dd><p>Returns two instances of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> split randomly from this collection, at desired
proportion.</p> proportion.</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -529,7 +530,7 @@ second one with <cite>1-train_prop</cite> elements</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.split_stratified"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.split_stratified">
<span class="sig-name descname"><span class="pre">split_stratified</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_prop</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.6</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.split_stratified"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.split_stratified" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">split_stratified</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_prop</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.6</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.split_stratified"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.split_stratified" title="Permalink to this definition"></a></dt>
<dd><p>Returns two instances of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> split with stratification from this collection, at desired <dd><p>Returns two instances of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> split with stratification from this collection, at desired
proportion.</p> proportion.</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -550,7 +551,7 @@ second one with <cite>1-train_prop</cite> elements</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.stats"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.stats">
<span class="sig-name descname"><span class="pre">stats</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">show</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.stats"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.stats" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">stats</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">show</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.stats"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.stats" title="Permalink to this definition"></a></dt>
<dd><p>Returns (and eventually prints) a dictionary with some stats of this collection. E.g.,:</p> <dd><p>Returns (and eventually prints) a dictionary with some stats of this collection. E.g.,:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;kindle&#39;</span><span class="p">,</span> <span class="n">tfidf</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;kindle&#39;</span><span class="p">,</span> <span class="n">tfidf</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data</span><span class="o">.</span><span class="n">training</span><span class="o">.</span><span class="n">stats</span><span class="p">()</span> <span class="gp">&gt;&gt;&gt; </span><span class="n">data</span><span class="o">.</span><span class="n">training</span><span class="o">.</span><span class="n">stats</span><span class="p">()</span>
@ -572,7 +573,7 @@ values for each class)</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.uniform_sampling"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.uniform_sampling">
<span class="sig-name descname"><span class="pre">uniform_sampling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.uniform_sampling"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.uniform_sampling" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">uniform_sampling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.uniform_sampling"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.uniform_sampling" title="Permalink to this definition"></a></dt>
<dd><p>Returns a uniform sample (an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a>) of desired size. The sampling is drawn <dd><p>Returns a uniform sample (an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a>) of desired size. The sampling is drawn
with replacement if the requested size is greater than the number of instances, or without replacement with replacement if the requested size is greater than the number of instances, or without replacement
otherwise.</p> otherwise.</p>
@ -591,7 +592,7 @@ otherwise.</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.uniform_sampling_index"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.uniform_sampling_index">
<span class="sig-name descname"><span class="pre">uniform_sampling_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.uniform_sampling_index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.uniform_sampling_index" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">uniform_sampling_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/base.html#LabelledCollection.uniform_sampling_index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.base.LabelledCollection.uniform_sampling_index" title="Permalink to this definition"></a></dt>
<dd><p>Returns an index to be used to extract a uniform sample of desired size. The sampling is drawn <dd><p>Returns an index to be used to extract a uniform sample of desired size. The sampling is drawn
with replacement if the requested size is greater than the number of instances, or without replacement with replacement if the requested size is greater than the number of instances, or without replacement
otherwise.</p> otherwise.</p>
@ -610,7 +611,7 @@ otherwise.</p>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.y"> <dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.y">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">y</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.y" title="Link to this definition"></a></dt> <em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">y</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.y" title="Permalink to this definition"></a></dt>
<dd><p>An alias to self.labels</p> <dd><p>An alias to self.labels</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -623,10 +624,10 @@ otherwise.</p>
</section> </section>
<section id="module-quapy.data.datasets"> <section id="module-quapy.data.datasets">
<span id="quapy-data-datasets-module"></span><h2>quapy.data.datasets module<a class="headerlink" href="#module-quapy.data.datasets" title="Link to this heading"></a></h2> <span id="quapy-data-datasets-module"></span><h2>quapy.data.datasets module<a class="headerlink" href="#module-quapy.data.datasets" title="Permalink to this heading"></a></h2>
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_IFCB"> <dt class="sig sig-object py" id="quapy.data.datasets.fetch_IFCB">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_IFCB</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">single_sample_train</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">for_model_selection</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_IFCB"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_IFCB" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_IFCB</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">single_sample_train</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">for_model_selection</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_IFCB"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_IFCB" title="Permalink to this definition"></a></dt>
<dd><p>Loads the IFCB dataset for quantification from <a class="reference external" href="https://zenodo.org/records/10036244">Zenodo</a> (for more <dd><p>Loads the IFCB dataset for quantification from <a class="reference external" href="https://zenodo.org/records/10036244">Zenodo</a> (for more
information on this dataset, please follow the zenodo link). information on this dataset, please follow the zenodo link).
This dataset is based on the data available publicly at This dataset is based on the data available publicly at
@ -658,7 +659,7 @@ i.e., a sampling protocol that returns a series of samples labelled by prevalenc
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIBinaryDataset"> <dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIBinaryDataset">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIBinaryDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_UCIBinaryDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_UCIBinaryDataset" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIBinaryDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_UCIBinaryDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_UCIBinaryDataset" title="Permalink to this definition"></a></dt>
<dd><p>Loads a UCI dataset as an instance of <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a>, as used in <dd><p>Loads a UCI dataset as an instance of <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a>, as used in
<a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253516300628">Pérez-Gállego, P., Quevedo, J. R., &amp; del Coz, J. J. (2017). <a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253516300628">Pérez-Gállego, P., Quevedo, J. R., &amp; del Coz, J. J. (2017).
Using ensembles for problems with characterizable changes in data distribution: A case study on quantification. Using ensembles for problems with characterizable changes in data distribution: A case study on quantification.
@ -688,7 +689,7 @@ The list of valid dataset names can be accessed in <cite>quapy.data.datasets.UCI
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIBinaryLabelledCollection"> <dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIBinaryLabelledCollection">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIBinaryLabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_UCIBinaryLabelledCollection"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_UCIBinaryLabelledCollection" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIBinaryLabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_UCIBinaryLabelledCollection"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_UCIBinaryLabelledCollection" title="Permalink to this definition"></a></dt>
<dd><p>Loads a UCI collection as an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a>, as used in <dd><p>Loads a UCI collection as an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a>, as used in
<a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253516300628">Pérez-Gállego, P., Quevedo, J. R., &amp; del Coz, J. J. (2017). <a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253516300628">Pérez-Gállego, P., Quevedo, J. R., &amp; del Coz, J. J. (2017).
Using ensembles for problems with characterizable changes in data distribution: A case study on quantification. Using ensembles for problems with characterizable changes in data distribution: A case study on quantification.
@ -725,7 +726,7 @@ This can be reproduced by using <a class="reference internal" href="#quapy.data.
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIMulticlassDataset"> <dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIMulticlassDataset">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIMulticlassDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_UCIMulticlassDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_UCIMulticlassDataset" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIMulticlassDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_UCIMulticlassDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_UCIMulticlassDataset" title="Permalink to this definition"></a></dt>
<dd><p>Loads a UCI multiclass dataset as an instance of <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a>.</p> <dd><p>Loads a UCI multiclass dataset as an instance of <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a>.</p>
<p>The list of available datasets is taken from <a class="reference external" href="https://archive.ics.uci.edu/">https://archive.ics.uci.edu/</a>, following these criteria: <p>The list of available datasets is taken from <a class="reference external" href="https://archive.ics.uci.edu/">https://archive.ics.uci.edu/</a>, following these criteria:
- It has more than 1000 instances - It has more than 1000 instances
@ -758,7 +759,7 @@ This can be reproduced by using <a class="reference internal" href="#quapy.data.
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIMulticlassLabelledCollection"> <dt class="sig sig-object py" id="quapy.data.datasets.fetch_UCIMulticlassLabelledCollection">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIMulticlassLabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_UCIMulticlassLabelledCollection"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_UCIMulticlassLabelledCollection" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_UCIMulticlassLabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_UCIMulticlassLabelledCollection"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_UCIMulticlassLabelledCollection" title="Permalink to this definition"></a></dt>
<dd><p>Loads a UCI multiclass collection as an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a>.</p> <dd><p>Loads a UCI multiclass collection as an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a>.</p>
<p>The list of available datasets is taken from <a class="reference external" href="https://archive.ics.uci.edu/">https://archive.ics.uci.edu/</a>, following these criteria: <p>The list of available datasets is taken from <a class="reference external" href="https://archive.ics.uci.edu/">https://archive.ics.uci.edu/</a>, following these criteria:
- It has more than 1000 instances - It has more than 1000 instances
@ -791,7 +792,7 @@ This can be reproduced by using <a class="reference internal" href="#quapy.data.
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_lequa2022"> <dt class="sig sig-object py" id="quapy.data.datasets.fetch_lequa2022">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_lequa2022</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">task</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_lequa2022"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_lequa2022" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_lequa2022</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">task</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_lequa2022"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_lequa2022" title="Permalink to this definition"></a></dt>
<dd><p>Loads the official datasets provided for the <a class="reference external" href="https://lequa2022.github.io/index">LeQua</a> competition. <dd><p>Loads the official datasets provided for the <a class="reference external" href="https://lequa2022.github.io/index">LeQua</a> competition.
In brief, there are 4 tasks (T1A, T1B, T2A, T2B) having to do with text quantification In brief, there are 4 tasks (T1A, T1B, T2A, T2B) having to do with text quantification
problems. Tasks T1A and T1B provide documents in vector form, while T2A and T2B provide raw documents instead. problems. Tasks T1A and T1B provide documents in vector form, while T2A and T2B provide raw documents instead.
@ -822,7 +823,7 @@ that return a series of samples stored in a directory which are labelled by prev
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_reviews"> <dt class="sig sig-object py" id="quapy.data.datasets.fetch_reviews">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_reviews</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tfidf</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pickle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_reviews"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_reviews" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_reviews</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tfidf</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pickle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_reviews"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_reviews" title="Permalink to this definition"></a></dt>
<dd><p>Loads a Reviews dataset as a Dataset instance, as used in <dd><p>Loads a Reviews dataset as a Dataset instance, as used in
<a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/3269206.3269287">Esuli, A., Moreo, A., and Sebastiani, F. “A recurrent neural network for sentiment quantification.” <a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/3269206.3269287">Esuli, A., Moreo, A., and Sebastiani, F. “A recurrent neural network for sentiment quantification.”
Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018.</a>. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018.</a>.
@ -848,7 +849,7 @@ faster subsequent invokations</p></li>
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.fetch_twitter"> <dt class="sig sig-object py" id="quapy.data.datasets.fetch_twitter">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_twitter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">for_model_selection</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pickle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_twitter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_twitter" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_twitter</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">for_model_selection</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pickle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></span><a class="reference internal" href="_modules/quapy/data/datasets.html#fetch_twitter"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.fetch_twitter" title="Permalink to this definition"></a></dt>
<dd><p>Loads a Twitter dataset as a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> instance, as used in: <dd><p>Loads a Twitter dataset as a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> instance, as used in:
<a class="reference external" href="https://link.springer.com/content/pdf/10.1007/s13278-016-0327-z.pdf">Gao, W., Sebastiani, F.: From classification to quantification in tweet sentiment analysis. <a class="reference external" href="https://link.springer.com/content/pdf/10.1007/s13278-016-0327-z.pdf">Gao, W., Sebastiani, F.: From classification to quantification in tweet sentiment analysis.
Social Network Analysis and Mining6(19), 122 (2016)</a> Social Network Analysis and Mining6(19), 122 (2016)</a>
@ -879,15 +880,15 @@ faster subsequent invokations</p></li>
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.datasets.warn"> <dt class="sig sig-object py" id="quapy.data.datasets.warn">
<span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">warn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/datasets.html#warn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.warn" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.datasets.</span></span><span class="sig-name descname"><span class="pre">warn</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/datasets.html#warn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.datasets.warn" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd></dd></dl>
</section> </section>
<section id="module-quapy.data.preprocessing"> <section id="module-quapy.data.preprocessing">
<span id="quapy-data-preprocessing-module"></span><h2>quapy.data.preprocessing module<a class="headerlink" href="#module-quapy.data.preprocessing" title="Link to this heading"></a></h2> <span id="quapy-data-preprocessing-module"></span><h2>quapy.data.preprocessing module<a class="headerlink" href="#module-quapy.data.preprocessing" title="Permalink to this heading"></a></h2>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer"> <dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">IndexTransformer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer" title="Link to this definition"></a></dt> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">IndexTransformer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p> <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<p>This class implements a sklearns-style transformer that indexes text as numerical ids for the tokens it <p>This class implements a sklearns-style transformer that indexes text as numerical ids for the tokens it
contains, and that would be generated by sklearns contains, and that would be generated by sklearns
@ -901,7 +902,7 @@ contains, and that would be generated by sklearns
</dl> </dl>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.add_word"> <dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.add_word">
<span class="sig-name descname"><span class="pre">add_word</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">word</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">id</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nogaps</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.add_word"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.add_word" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">add_word</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">word</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">id</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nogaps</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.add_word"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.add_word" title="Permalink to this definition"></a></dt>
<dd><p>Adds a new token (regardless of whether it has been found in the text or not), with dedicated id. <dd><p>Adds a new token (regardless of whether it has been found in the text or not), with dedicated id.
Useful to define special tokens for codifying unknown words, or padding tokens.</p> Useful to define special tokens for codifying unknown words, or padding tokens.</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -922,7 +923,7 @@ precedent ids stored so far</p></li>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.fit"> <dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.fit">
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.fit" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.fit"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.fit" title="Permalink to this definition"></a></dt>
<dd><p>Fits the transformer, i.e., decides on the vocabulary, given a list of strings.</p> <dd><p>Fits the transformer, i.e., decides on the vocabulary, given a list of strings.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -936,7 +937,7 @@ precedent ids stored so far</p></li>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.fit_transform"> <dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.fit_transform">
<span class="sig-name descname"><span class="pre">fit_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.fit_transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.fit_transform" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">fit_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.fit_transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.fit_transform" title="Permalink to this definition"></a></dt>
<dd><p>Fits the transform on <cite>X</cite> and transforms it.</p> <dd><p>Fits the transform on <cite>X</cite> and transforms it.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -953,7 +954,7 @@ precedent ids stored so far</p></li>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.transform"> <dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.transform">
<span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.transform" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.transform" title="Permalink to this definition"></a></dt>
<dd><p>Transforms the strings in <cite>X</cite> as lists of numerical ids</p> <dd><p>Transforms the strings in <cite>X</cite> as lists of numerical ids</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt> <dt class="field-odd">Parameters<span class="colon">:</span></dt>
@ -970,7 +971,7 @@ precedent ids stored so far</p></li>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.vocabulary_size"> <dt class="sig sig-object py" id="quapy.data.preprocessing.IndexTransformer.vocabulary_size">
<span class="sig-name descname"><span class="pre">vocabulary_size</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.vocabulary_size"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.vocabulary_size" title="Link to this definition"></a></dt> <span class="sig-name descname"><span class="pre">vocabulary_size</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#IndexTransformer.vocabulary_size"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.IndexTransformer.vocabulary_size" title="Permalink to this definition"></a></dt>
<dd><p>Gets the length of the vocabulary according to which the document tokens have been indexed</p> <dd><p>Gets the length of the vocabulary according to which the document tokens have been indexed</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt> <dt class="field-odd">Returns<span class="colon">:</span></dt>
@ -983,7 +984,7 @@ precedent ids stored so far</p></li>
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.preprocessing.index"> <dt class="sig sig-object py" id="quapy.data.preprocessing.index">
<span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.index" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.index" title="Permalink to this definition"></a></dt>
<dd><p>Indexes the tokens of a textual <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> of string documents. <dd><p>Indexes the tokens of a textual <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> of string documents.
To index a document means to replace each different token by a unique numerical index. To index a document means to replace each different token by a unique numerical index.
Rare words (i.e., words occurring less than <cite>min_df</cite> times) are replaced by a special token <cite>UNK</cite></p> Rare words (i.e., words occurring less than <cite>min_df</cite> times) are replaced by a special token <cite>UNK</cite></p>
@ -1007,7 +1008,7 @@ are lists of str</p></li>
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.preprocessing.reduce_columns"> <dt class="sig sig-object py" id="quapy.data.preprocessing.reduce_columns">
<span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">reduce_columns</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#reduce_columns"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.reduce_columns" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">reduce_columns</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#reduce_columns"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.reduce_columns" title="Permalink to this definition"></a></dt>
<dd><p>Reduces the dimensionality of the instances, represented as a <cite>csr_matrix</cite> (or any subtype of <dd><p>Reduces the dimensionality of the instances, represented as a <cite>csr_matrix</cite> (or any subtype of
<cite>scipy.sparse.spmatrix</cite>), of training and test documents by removing the columns of words which are not present <cite>scipy.sparse.spmatrix</cite>), of training and test documents by removing the columns of words which are not present
in at least <cite>min_df</cite> instances in the training set</p> in at least <cite>min_df</cite> instances in the training set</p>
@ -1030,7 +1031,7 @@ in the training set have been removed</p>
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.preprocessing.standardize"> <dt class="sig sig-object py" id="quapy.data.preprocessing.standardize">
<span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">standardize</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#standardize"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.standardize" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">standardize</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#standardize"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.standardize" title="Permalink to this definition"></a></dt>
<dd><p>Standardizes the real-valued columns of a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a>. <dd><p>Standardizes the real-valued columns of a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a>.
Standardization, aka z-scoring, of a variable <cite>X</cite> comes down to subtracting the average and normalizing by the Standardization, aka z-scoring, of a variable <cite>X</cite> comes down to subtracting the average and normalizing by the
standard deviation.</p> standard deviation.</p>
@ -1050,7 +1051,7 @@ standard deviation.</p>
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.preprocessing.text2tfidf"> <dt class="sig sig-object py" id="quapy.data.preprocessing.text2tfidf">
<span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">text2tfidf</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sublinear_tf</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#text2tfidf"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.text2tfidf" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.preprocessing.</span></span><span class="sig-name descname"><span class="pre">text2tfidf</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_df</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sublinear_tf</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inplace</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/preprocessing.html#text2tfidf"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.preprocessing.text2tfidf" title="Permalink to this definition"></a></dt>
<dd><p>Transforms a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> of textual instances into a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> of <dd><p>Transforms a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> of textual instances into a <a class="reference internal" href="#quapy.data.base.Dataset" title="quapy.data.base.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.Dataset</span></code></a> of
tfidf weighted sparse vectors</p> tfidf weighted sparse vectors</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -1074,10 +1075,10 @@ current Dataset (if inplace=True) where the instances are stored in a <cite>csr_
</section> </section>
<section id="module-quapy.data.reader"> <section id="module-quapy.data.reader">
<span id="quapy-data-reader-module"></span><h2>quapy.data.reader module<a class="headerlink" href="#module-quapy.data.reader" title="Link to this heading"></a></h2> <span id="quapy-data-reader-module"></span><h2>quapy.data.reader module<a class="headerlink" href="#module-quapy.data.reader" title="Permalink to this heading"></a></h2>
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.reader.binarize"> <dt class="sig sig-object py" id="quapy.data.reader.binarize">
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">binarize</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pos_class</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#binarize"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.binarize" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">binarize</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pos_class</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#binarize"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.binarize" title="Permalink to this definition"></a></dt>
<dd><p>Binarizes a categorical array-like collection of labels towards the positive class <cite>pos_class</cite>. E.g.,:</p> <dd><p>Binarizes a categorical array-like collection of labels towards the positive class <cite>pos_class</cite>. E.g.,:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">binarize</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">pos_class</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">binarize</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">pos_class</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span> <span class="gp">&gt;&gt;&gt; </span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
@ -1099,7 +1100,7 @@ current Dataset (if inplace=True) where the instances are stored in a <cite>csr_
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.reader.from_csv"> <dt class="sig sig-object py" id="quapy.data.reader.from_csv">
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">from_csv</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">encoding</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'utf-8'</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#from_csv"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.from_csv" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">from_csv</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">encoding</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'utf-8'</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#from_csv"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.from_csv" title="Permalink to this definition"></a></dt>
<dd><p>Reads a csv file in which columns are separated by ,. <dd><p>Reads a csv file in which columns are separated by ,.
File format &lt;label&gt;,&lt;feat1&gt;,&lt;feat2&gt;,…,&lt;featn&gt;</p> File format &lt;label&gt;,&lt;feat1&gt;,&lt;feat2&gt;,…,&lt;featn&gt;</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -1117,7 +1118,7 @@ File format &lt;label&gt;,&lt;feat1&gt;,&lt;feat2&gt;,…,&lt;featn&gt;</p>
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.reader.from_sparse"> <dt class="sig sig-object py" id="quapy.data.reader.from_sparse">
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">from_sparse</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#from_sparse"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.from_sparse" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">from_sparse</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#from_sparse"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.from_sparse" title="Permalink to this definition"></a></dt>
<dd><p>Reads a labelled collection of real-valued instances expressed in sparse format <dd><p>Reads a labelled collection of real-valued instances expressed in sparse format
File format &lt;-1 or 0 or 1&gt;[s col(int):val(float)]</p> File format &lt;-1 or 0 or 1&gt;[s col(int):val(float)]</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -1132,7 +1133,7 @@ File format &lt;-1 or 0 or 1&gt;[s col(int):val(float)]</p>
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.reader.from_text"> <dt class="sig sig-object py" id="quapy.data.reader.from_text">
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">from_text</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">encoding</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'utf-8'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">class2int</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#from_text"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.from_text" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">from_text</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">encoding</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'utf-8'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">class2int</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#from_text"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.from_text" title="Permalink to this definition"></a></dt>
<dd><p>Reads a labelled colletion of documents. <dd><p>Reads a labelled colletion of documents.
File fomart &lt;0 or 1&gt; &lt;document&gt;</p> File fomart &lt;0 or 1&gt; &lt;document&gt;</p>
<dl class="field-list simple"> <dl class="field-list simple">
@ -1151,7 +1152,7 @@ File fomart &lt;0 or 1&gt; &lt;document&gt;</p>
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.data.reader.reindex_labels"> <dt class="sig sig-object py" id="quapy.data.reader.reindex_labels">
<span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">reindex_labels</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#reindex_labels"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.reindex_labels" title="Link to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.data.reader.</span></span><span class="sig-name descname"><span class="pre">reindex_labels</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/quapy/data/reader.html#reindex_labels"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#quapy.data.reader.reindex_labels" title="Permalink to this definition"></a></dt>
<dd><p>Re-indexes a list of labels as a list of indexes, and returns the classnames corresponding to the indexes. <dd><p>Re-indexes a list of labels as a list of indexes, and returns the classnames corresponding to the indexes.
E.g.:</p> E.g.:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">reindex_labels</span><span class="p">([</span><span class="s1">&#39;B&#39;</span><span class="p">,</span> <span class="s1">&#39;B&#39;</span><span class="p">,</span> <span class="s1">&#39;A&#39;</span><span class="p">,</span> <span class="s1">&#39;C&#39;</span><span class="p">])</span> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">reindex_labels</span><span class="p">([</span><span class="s1">&#39;B&#39;</span><span class="p">,</span> <span class="s1">&#39;B&#39;</span><span class="p">,</span> <span class="s1">&#39;A&#39;</span><span class="p">,</span> <span class="s1">&#39;C&#39;</span><span class="p">])</span>
@ -1170,7 +1171,7 @@ E.g.:</p>
</section> </section>
<section id="module-quapy.data"> <section id="module-quapy.data">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-quapy.data" title="Link to this heading"></a></h2> <span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-quapy.data" title="Permalink to this heading"></a></h2>
</section> </section>
</section> </section>

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@ -1,11 +1,11 @@
<!DOCTYPE html> <!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./"> <html class="writer-html5" lang="en">
<head> <head>
<meta charset="utf-8" /> <meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Search &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title> <title>Search &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.9 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=92fd9be5" /> <link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=19f00094" /> <link rel="stylesheet" type="text/css" href="_static/css/theme.css" />
@ -13,11 +13,12 @@
<script src="_static/js/html5shiv.min.js"></script> <script src="_static/js/html5shiv.min.js"></script>
<![endif]--> <![endif]-->
<script src="_static/jquery.js?v=5d32c60e"></script> <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script> <script src="_static/jquery.js"></script>
<script src="_static/documentation_options.js?v=22607128"></script> <script src="_static/underscore.js"></script>
<script src="_static/doctools.js?v=9a2dae69"></script> <script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script> <script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/js/theme.js"></script> <script src="_static/js/theme.js"></script>
<script src="_static/searchtools.js"></script> <script src="_static/searchtools.js"></script>
<script src="_static/language_data.js"></script> <script src="_static/language_data.js"></script>

File diff suppressed because one or more lines are too long

35
docs/make.bat Normal file
View File

@ -0,0 +1,35 @@
@ECHO OFF
pushd %~dp0
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=source
set BUILDDIR=build
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
echo.installed, then set the SPHINXBUILD environment variable to point
echo.to the full path of the 'sphinx-build' executable. Alternatively you
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.https://www.sphinx-doc.org/
exit /b 1
)
if "%1" == "" goto help
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end
:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
:end
popd

55
docs/source/conf.py Normal file
View File

@ -0,0 +1,55 @@
# Configuration file for the Sphinx documentation builder.
#
# For the full list of built-in configuration values, see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Project information -----------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information
import pathlib
import sys
from os.path import join
quapy_path = join(pathlib.Path(__file__).parents[2].resolve().as_posix(), 'quapy')
print(f'quapy path={quapy_path}')
sys.path.insert(0, quapy_path)
project = 'QuaPy: A Python-based open-source framework for quantification'
copyright = '2024, Alejandro Moreo'
author = 'Alejandro Moreo'
import quapy
release = quapy.__version__
# -- General configuration ---------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
extensions = [
'sphinx.ext.duration',
'sphinx.ext.doctest',
'sphinx.ext.autodoc',
'sphinx.ext.autosummary',
'sphinx.ext.viewcode',
'sphinx.ext.napoleon'
]
templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
# -- Options for HTML output -------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
html_theme = 'sphinx_rtd_theme'
# html_theme = 'furo'
# need to be installed: pip install furo (not working...)
html_static_path = ['_static']

41
docs/source/index.rst Normal file
View File

@ -0,0 +1,41 @@
.. QuaPy: A Python-based open-source framework for quantification documentation master file, created by
sphinx-quickstart on Wed Feb 7 16:26:46 2024.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Welcome to QuaPy's documentation!
==========================================================================================
QuaPy is a Python-based open-source framework for quantification.
This document contains the API of the modules included in QuaPy.
Installation
------------
`pip install quapy`
GitHub
------------
QuaPy is hosted in GitHub at `https://github.com/HLT-ISTI/QuaPy <https://github.com/HLT-ISTI/QuaPy>`_
.. toctree::
:maxdepth: 2
:caption: Contents:
Contents
--------
.. toctree::
modules
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

7
docs/source/modules.rst Normal file
View File

@ -0,0 +1,7 @@
quapy
=====
.. toctree::
:maxdepth: 4
quapy

View File

@ -0,0 +1,45 @@
quapy.classification package
============================
Submodules
----------
quapy.classification.calibration module
---------------------------------------
.. automodule:: quapy.classification.calibration
:members:
:undoc-members:
:show-inheritance:
quapy.classification.methods module
-----------------------------------
.. automodule:: quapy.classification.methods
:members:
:undoc-members:
:show-inheritance:
quapy.classification.neural module
----------------------------------
.. automodule:: quapy.classification.neural
:members:
:undoc-members:
:show-inheritance:
quapy.classification.svmperf module
-----------------------------------
.. automodule:: quapy.classification.svmperf
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: quapy.classification
:members:
:undoc-members:
:show-inheritance:

View File

@ -0,0 +1,46 @@
quapy.data package
==================
Submodules
----------
quapy.data.base module
----------------------
.. automodule:: quapy.data.base
:members:
:undoc-members:
:show-inheritance:
quapy.data.datasets module
--------------------------
.. automodule:: quapy.data.datasets
:members:
:undoc-members:
:show-inheritance:
quapy.data.preprocessing module
-------------------------------
.. automodule:: quapy.data.preprocessing
:members:
:undoc-members:
:show-inheritance:
quapy.data.reader module
------------------------
.. automodule:: quapy.data.reader
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: quapy.data
:members:
:undoc-members:
:show-inheritance:

View File

@ -0,0 +1,61 @@
quapy.method package
====================
Submodules
----------
quapy.method.aggregative module
-------------------------------
.. automodule:: quapy.method.aggregative
:members:
:undoc-members:
:show-inheritance:
.. automodule:: quapy.method._kdey
:members:
:undoc-members:
:show-inheritance:
.. automodule:: quapy.method._neural
:members:
:undoc-members:
:show-inheritance:
.. automodule:: quapy.method._threshold_optim
:members:
:undoc-members:
:show-inheritance:
quapy.method.base module
------------------------
.. automodule:: quapy.method.base
:members:
:undoc-members:
:show-inheritance:
quapy.method.meta module
------------------------
.. automodule:: quapy.method.meta
:members:
:undoc-members:
:show-inheritance:
quapy.method.non\_aggregative module
------------------------------------
.. automodule:: quapy.method.non_aggregative
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: quapy.method
:members:
:undoc-members:
:show-inheritance:

80
docs/source/quapy.rst Normal file
View File

@ -0,0 +1,80 @@
quapy package
=============
Subpackages
-----------
.. toctree::
:maxdepth: 4
quapy.classification
quapy.data
quapy.method
Submodules
----------
quapy.error module
------------------
.. automodule:: quapy.error
:members:
:undoc-members:
:show-inheritance:
quapy.evaluation module
-----------------------
.. automodule:: quapy.evaluation
:members:
:undoc-members:
:show-inheritance:
quapy.functional module
-----------------------
.. automodule:: quapy.functional
:members:
:undoc-members:
:show-inheritance:
quapy.model\_selection module
-----------------------------
.. automodule:: quapy.model_selection
:members:
:undoc-members:
:show-inheritance:
quapy.plot module
-----------------
.. automodule:: quapy.plot
:members:
:undoc-members:
:show-inheritance:
quapy.protocol module
---------------------
.. automodule:: quapy.protocol
:members:
:undoc-members:
:show-inheritance:
quapy.util module
-----------------
.. automodule:: quapy.util
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: quapy
:members:
:undoc-members:
:show-inheritance:

View File

@ -0,0 +1,194 @@
"""
.. author:: Paweł Czyż
This example shows how to use Bayesian quantification (https://arxiv.org/abs/2302.09159),
which is suitable for low-data situations and when the uncertainty of the prevalence estimate is of interest.
For this, we will need to install extra dependencies:
```
$ pip install quapy[bayesian]
```
Running the script via:
```
$ python examples/bayesian_quantification.py
```
will produce a plot `bayesian_quantification.pdf`.
Due to a low sample size and the fact that classes 2 and 3 are hard to distinguish,
it is hard to estimate the proportions accurately, what is visible by looking at the posterior samples,
showing large uncertainty.
"""
import numpy as np
import matplotlib.pyplot as plt
import quapy as qp
from sklearn.ensemble import RandomForestClassifier
from quapy.method.aggregative import BayesianCC, ACC, PACC
from quapy.data import LabelledCollection, Dataset
FIGURE_PATH = "bayesian_quantification.pdf"
def simulate_data(rng) -> Dataset:
"""Generates a simulated data set with three classes."""
# Number of examples of each class in both data sets
n_train = [400, 400, 400]
n_test = [40, 25, 15]
# Mean vectors and shared covariance of P(X|Y) distributions
mus = [np.zeros(2), np.array([1, 1.5]), np.array([1.5, 1])]
cov = np.eye(2)
def gen_Xy(centers, sizes):
X = np.concatenate([rng.multivariate_normal(mu_i, cov, size_i) for mu_i, size_i in zip(centers, sizes)])
y = np.concatenate([[i] * n for i, n in enumerate(sizes)])
return X, y
# Generate the features accordingly
train = LabelledCollection(*gen_Xy(centers=mus, sizes=n_train))
test = LabelledCollection(*gen_Xy(centers=mus, sizes=n_test))
return Dataset(training=train, test=test)
def plot_simulated_data(axs, data: Dataset) -> None:
"""Plots a simulated data set.
:param axs: a list of three `plt.Axes` objects, on which the samples will be plotted.
:param data: the simulated data set.
"""
train, test = data.train_test
xlim = (
-0.3 + min(train.X[:, 0].min(), test.X[:, 0].min()),
0.3 + max(train.X[:, 0].max(), test.X[:, 0].max())
)
ylim = (
-0.3 + min(train.X[:, 1].min(), test.X[:, 1].min()),
0.3 + max(train.X[:, 1].max(), test.X[:, 1].max())
)
for ax in axs:
ax.set_xlabel("$X_1$")
ax.set_ylabel("$X_2$")
ax.set_aspect("equal")
ax.set_xlim(*xlim)
ax.set_ylim(*ylim)
ax.set_xticks([])
ax.set_yticks([])
ax = axs[0]
ax.set_title("Training set")
for i in range(data.n_classes):
ax.scatter(train.X[train.y == i, 0], train.X[train.y == i, 1], c=f"C{i}", s=3, rasterized=True)
ax = axs[1]
ax.set_title("Test set\n(with labels)")
for i in range(data.n_classes):
ax.scatter(test.X[test.y == i, 0], test.X[test.y == i, 1], c=f"C{i}", s=3, rasterized=True)
ax = axs[2]
ax.set_title("Test set\n(as observed)")
ax.scatter(test.X[:, 0], test.X[:, 1], c="C5", s=3, rasterized=True)
def plot_true_proportions(ax: plt.Axes, test_prevalence: np.ndarray) -> None:
"""Plots the true proportions."""
n_classes = len(test_prevalence)
x_ax = np.arange(n_classes)
ax.plot(x_ax, test_prevalence, c="black", linewidth=2, label="True")
ax.set_xlabel("Class")
ax.set_ylabel("Prevalence")
ax.set_xticks(x_ax, x_ax + 1)
ax.set_yticks([0, 0.25, 0.5, 0.75, 1.0])
ax.set_xlim(-0.1, n_classes - 0.9)
ax.set_ylim(-0.01, 1.01)
def get_random_forest() -> RandomForestClassifier:
"""An auxiliary factory method to generate a random forest."""
return RandomForestClassifier(n_estimators=10, random_state=5)
def _get_estimate(estimator_class, training: LabelledCollection, test: np.ndarray) -> None:
"""Auxiliary method for running ACC and PACC."""
estimator = estimator_class(get_random_forest())
estimator.fit(training)
return estimator.quantify(test)
def train_and_plot_bayesian_quantification(ax: plt.Axes, training: LabelledCollection, test: LabelledCollection) -> None:
"""Fits Bayesian quantification and plots posterior mean as well as individual samples"""
print('training model Bayesian CC...', end='')
quantifier = BayesianCC(classifier=get_random_forest())
quantifier.fit(training)
# Obtain mean prediction
mean_prediction = quantifier.quantify(test.X)
mae = qp.error.mae(test.prevalence(), mean_prediction)
x_ax = np.arange(training.n_classes)
ax.plot(x_ax, mean_prediction, c="salmon", linewidth=2, linestyle=":", label="Bayesian")
# Obtain individual samples
samples = quantifier.get_prevalence_samples()
for sample in samples[::5, :]:
ax.plot(x_ax, sample, c="salmon", alpha=0.1, linewidth=0.3, rasterized=True)
print(f'MAE={mae:.4f} [done]')
def train_and_plot_acc(ax: plt.Axes, training: LabelledCollection, test: LabelledCollection) -> None:
print('training model ACC...', end='')
estimate = _get_estimate(ACC, training, test.X)
mae = qp.error.mae(test.prevalence(), estimate)
ax.plot(np.arange(training.n_classes), estimate, c="darkblue", linewidth=2, linestyle=":", label="ACC")
print(f'MAE={mae:.4f} [done]')
def train_and_plot_pacc(ax: plt.Axes, training: LabelledCollection, test: LabelledCollection) -> None:
print('training model PACC...', end='')
estimate = _get_estimate(PACC, training, test.X)
mae = qp.error.mae(test.prevalence(), estimate)
ax.plot(np.arange(training.n_classes), estimate, c="limegreen", linewidth=2, linestyle=":", label="PACC")
print(f'MAE={mae:.4f} [done]')
def main() -> None:
# --- Simulate data ---
print('generating simulated data')
rng = np.random.default_rng(42)
data = simulate_data(rng)
training, test = data.train_test
# --- Plot simulated data ---
fig, axs = plt.subplots(1, 4, figsize=(13, 3), dpi=300)
for ax in axs:
ax.spines[['top', 'right']].set_visible(False)
plot_simulated_data(axs[:3], data)
# --- Plot quantification results ---
ax = axs[3]
plot_true_proportions(ax, test_prevalence=test.prevalence())
train_and_plot_acc(ax, training=training, test=test)
train_and_plot_pacc(ax, training=training, test=test)
train_and_plot_bayesian_quantification(ax=ax, training=training, test=test)
print('[done]')
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left', frameon=False)
print(f'saving plot in path {FIGURE_PATH}...', end='')
fig.tight_layout()
fig.savefig(FIGURE_PATH)
print('[done]')
if __name__ == '__main__':
main()

View File

@ -1,43 +1,28 @@
import itertools import itertools
import warnings
from collections import defaultdict from collections import defaultdict
from typing import Union, Callable from typing import Literal, Union, Callable
from numpy.typing import ArrayLike
import scipy import scipy
import numpy as np import numpy as np
def prevalence_linspace(n_prevalences=21, repeats=1, smooth_limits_epsilon=0.01): # ------------------------------------------------------------------------------------------
""" # Counter utils
Produces an array of uniformly separated values of prevalence. # ------------------------------------------------------------------------------------------
By default, produces an array of 21 prevalence values, with
step 0.05 and with the limits smoothed, i.e.:
[0.01, 0.05, 0.10, 0.15, ..., 0.90, 0.95, 0.99]
:param n_prevalences: the number of prevalence values to sample from the [0,1] interval (default 21) def counts_from_labels(labels: ArrayLike, classes: ArrayLike) -> np.ndarray:
:param repeats: number of times each prevalence is to be repeated (defaults to 1)
:param smooth_limits_epsilon: the quantity to add and subtract to the limits 0 and 1
:return: an array of uniformly separated prevalence values
""" """
p = np.linspace(0., 1., num=n_prevalences, endpoint=True) Computes the raw count values from a vector of labels.
p[0] += smooth_limits_epsilon
p[-1] -= smooth_limits_epsilon
if p[0] > p[1]:
raise ValueError(f'the smoothing in the limits is greater than the prevalence step')
if repeats > 1:
p = np.repeat(p, repeats)
return p
def counts_from_labels(labels, classes):
"""
Computes the count values from a vector of labels.
:param labels: array-like of shape `(n_instances,)` with the label for each instance :param labels: array-like of shape `(n_instances,)` with the label for each instance
:param classes: the class labels. This is needed in order to correctly compute the prevalence vector even when :param classes: the class labels. This is needed in order to correctly compute the prevalence vector even when
some classes have no examples. some classes have no examples.
:return: an ndarray of shape `(len(classes),)` with the occurrence counts of each class :return: ndarray of shape `(len(classes),)` with the raw counts for each class, in the same order
as they appear in `classes`
""" """
if labels.ndim != 1: if np.asarray(labels).ndim != 1:
raise ValueError(f'param labels does not seem to be a ndarray of label predictions') raise ValueError(f'param labels does not seem to be a ndarray of label predictions')
unique, counts = np.unique(labels, return_counts=True) unique, counts = np.unique(labels, return_counts=True)
by_class = defaultdict(lambda:0, dict(zip(unique, counts))) by_class = defaultdict(lambda:0, dict(zip(unique, counts)))
@ -45,20 +30,22 @@ def counts_from_labels(labels, classes):
return counts return counts
def prevalence_from_labels(labels, classes): def prevalence_from_labels(labels: ArrayLike, classes: ArrayLike):
""" """
Computes the prevalence values from a vector of labels. Computes the prevalence values from a vector of labels.
:param labels: array-like of shape `(n_instances,)` with the label for each instance :param labels: array-like of shape `(n_instances,)` with the label for each instance
:param classes: the class labels. This is needed in order to correctly compute the prevalence vector even when :param classes: the class labels. This is needed in order to correctly compute the prevalence vector even when
some classes have no examples. some classes have no examples.
:return: an ndarray of shape `(len(classes))` with the class prevalence values :return: ndarray of shape `(len(classes),)` with the class proportions for each class, in the same order
as they appear in `classes`
""" """
counts = np.array(counts_from_labels(labels, classes), dtype=float) counts = counts_from_labels(labels, classes)
return counts / np.sum(counts) prevalences = counts.astype(float) / np.sum(counts)
return prevalences
def prevalence_from_probabilities(posteriors, binarize: bool = False): def prevalence_from_probabilities(posteriors: ArrayLike, binarize: bool = False):
""" """
Returns a vector of prevalence values from a matrix of posterior probabilities. Returns a vector of prevalence values from a matrix of posterior probabilities.
@ -67,8 +54,9 @@ def prevalence_from_probabilities(posteriors, binarize: bool = False):
converting the vectors of posterior probabilities into class indices, by taking the argmax). converting the vectors of posterior probabilities into class indices, by taking the argmax).
:return: array of shape `(n_classes,)` containing the prevalence values :return: array of shape `(n_classes,)` containing the prevalence values
""" """
posteriors = np.asarray(posteriors)
if posteriors.ndim != 2: if posteriors.ndim != 2:
raise ValueError(f'param posteriors does not seem to be a ndarray of posteior probabilities') raise ValueError(f'param posteriors does not seem to be a ndarray of posterior probabilities')
if binarize: if binarize:
predictions = np.argmax(posteriors, axis=-1) predictions = np.argmax(posteriors, axis=-1)
return prevalence_from_labels(predictions, np.arange(posteriors.shape[1])) return prevalence_from_labels(predictions, np.arange(posteriors.shape[1]))
@ -78,25 +66,264 @@ def prevalence_from_probabilities(posteriors, binarize: bool = False):
return prevalences return prevalences
def as_binary_prevalence(positive_prevalence: Union[float, np.ndarray], clip_if_necessary=False): def num_prevalence_combinations(n_prevpoints:int, n_classes:int, n_repeats:int=1) -> int:
"""
Computes the number of valid prevalence combinations in the n_classes-dimensional simplex if `n_prevpoints` equally
distant prevalence values are generated and `n_repeats` repetitions are requested.
The computation comes down to calculating:
.. math::
\\binom{N+C-1}{C-1} \\times r
where `N` is `n_prevpoints-1`, i.e., the number of probability mass blocks to allocate, `C` is the number of
classes, and `r` is `n_repeats`. This solution comes from the
`Stars and Bars <https://brilliant.org/wiki/integer-equations-star-and-bars/>`_ problem.
:param int n_classes: number of classes
:param int n_prevpoints: number of prevalence points.
:param int n_repeats: number of repetitions for each prevalence combination
:return: The number of possible combinations. For example, if `n_classes`=2, `n_prevpoints`=5, `n_repeats`=1,
then the number of possible combinations are 5, i.e.: [0,1], [0.25,0.75], [0.50,0.50], [0.75,0.25],
and [1.0,0.0]
"""
N = n_prevpoints-1
C = n_classes
r = n_repeats
return int(scipy.special.binom(N + C - 1, C - 1) * r)
def get_nprevpoints_approximation(combinations_budget:int, n_classes:int, n_repeats:int=1) -> int:
"""
Searches for the largest number of (equidistant) prevalence points to define for each of the `n_classes` classes so
that the number of valid prevalence values generated as combinations of prevalence points (points in a
`n_classes`-dimensional simplex) do not exceed combinations_budget.
:param int combinations_budget: maximum number of combinations allowed
:param int n_classes: number of classes
:param int n_repeats: number of repetitions for each prevalence combination
:return: the largest number of prevalence points that generate less than combinations_budget valid prevalences
"""
assert n_classes > 0 and n_repeats > 0 and combinations_budget > 0, 'parameters must be positive integers'
n_prevpoints = 1
while True:
combinations = num_prevalence_combinations(n_prevpoints, n_classes, n_repeats)
if combinations > combinations_budget:
return n_prevpoints-1
else:
n_prevpoints += 1
# ------------------------------------------------------------------------------------------
# Prevalence vectors
# ------------------------------------------------------------------------------------------
def as_binary_prevalence(positive_prevalence: Union[float, ArrayLike], clip_if_necessary: bool=False) -> np.ndarray:
""" """
Helper that, given a float representing the prevalence for the positive class, returns a np.ndarray of two Helper that, given a float representing the prevalence for the positive class, returns a np.ndarray of two
values representing a binary distribution. values representing a binary distribution.
:param positive_prevalence: prevalence for the positive class :param positive_prevalence: float or array-like of floats with the prevalence for the positive class
:param clip_if_necessary: if True, clips the value in [0,1] in order to guarantee the resulting distribution :param bool clip_if_necessary: if True, clips the value in [0,1] in order to guarantee the resulting distribution
is valid. If False, it then checks that the value is in the valid range, and raises an error if not. is valid. If False, it then checks that the value is in the valid range, and raises an error if not.
:return: np.ndarray of shape `(2,)` :return: np.ndarray of shape `(2,)`
""" """
positive_prevalence = np.asarray(positive_prevalence, float)
if clip_if_necessary: if clip_if_necessary:
positive_prevalence = np.clip(positive_prevalence, 0, 1) positive_prevalence = np.clip(positive_prevalence, 0, 1)
else: else:
assert 0 <= positive_prevalence <= 1, 'the value provided is not a valid prevalence for the positive class' assert np.logical_and(0 <= positive_prevalence, positive_prevalence <= 1).all(), \
'the value provided is not a valid prevalence for the positive class'
return np.asarray([1-positive_prevalence, positive_prevalence]).T return np.asarray([1-positive_prevalence, positive_prevalence]).T
def strprev(prevalences: ArrayLike, prec: int=3) -> str:
"""
Returns a string representation for a prevalence vector. E.g.,
def HellingerDistance(P, Q) -> float: >>> strprev([1/3, 2/3], prec=2)
>>> '[0.33, 0.67]'
:param prevalences: array-like of prevalence values
:param prec: int, indicates the float precision (number of decimal values to print)
:return: string
"""
return '['+ ', '.join([f'{p:.{prec}f}' for p in prevalences]) + ']'
def check_prevalence_vector(prevalences: ArrayLike, raise_exception: bool=False, tolerance: float=1e-08, aggr=True):
"""
Checks that `prevalences` is a valid prevalence vector, i.e., it contains values in [0,1] and
the values sum up to 1. In other words, verifies that the `prevalences` vectors lies in the
probability simplex.
:param ArrayLike prevalences: the prevalence vector, or vectors, to check
:param bool raise_exception: whether to raise an exception if the vector (or any of the vectors) does
not lie in the simplex (default False)
:param float tolerance: error tolerance for the check `sum(prevalences) - 1 = 0`
:param bool aggr: if True (default) returns one single bool (True if all prevalence vectors are valid,
False otherwise), if False returns an array of bool, one for each prevalence vector
:return: a single bool True if `prevalences` is a vector of prevalence values that lies on the simplex,
or False otherwise; alternatively, if `prevalences` is a matrix of shape `(num_vectors, n_classes,)`
then it returns one such bool for each prevalence vector
"""
prevalences = np.asarray(prevalences)
all_positive = prevalences>=0
if not all_positive.all():
if raise_exception:
raise ValueError('some prevalence vectors contain negative numbers; '
'consider using the qp.functional.normalize_prevalence with '
'any method from ["clip", "mapsimplex", "softmax"]')
all_close_1 = np.isclose(prevalences.sum(axis=-1), 1, atol=tolerance)
if not all_close_1.all():
if raise_exception:
raise ValueError('some prevalence vectors do not sum up to 1; '
'consider using the qp.functional.normalize_prevalence with '
'any method from ["l1", "clip", "mapsimplex", "softmax"]')
valid = np.logical_and(all_positive.all(axis=-1), all_close_1)
if aggr:
return valid.all()
else:
return valid
def normalize_prevalence(prevalences: ArrayLike, method='l1'):
"""
Normalizes a vector or matrix of prevalence values. The normalization consists of applying a L1 normalization in
cases in which the prevalence values are not all-zeros, and to convert the prevalence values into `1/n_classes` in
cases in which all values are zero.
:param prevalences: array-like of shape `(n_classes,)` or of shape `(n_samples, n_classes,)` with prevalence values
:param str method: indicates the normalization method to employ, options are:
* `l1`: applies L1 normalization (default); a 0 vector is mapped onto the uniform prevalence
* `clip`: clip values in [0,1] and then rescales so that the L1 norm is 1
* `mapsimplex`: projects vectors onto the probability simplex. This implementation relies on
`Mathieu Blondel's projection_simplex_sort <https://gist.github.com/mblondel/6f3b7aaad90606b98f71>`_
* `softmax`: applies softmax to all vectors
* `condsoftmax`: applies softmax only to invalid prevalence vectors
:return: a normalized vector or matrix of prevalence values
"""
if method in ['none', None]:
return prevalences
prevalences = np.asarray(prevalences, dtype=float)
if method=='l1':
normalized = l1_norm(prevalences)
check_prevalence_vector(normalized, raise_exception=True)
elif method=='clip':
normalized = clip(prevalences) # no need to check afterwards
elif method=='mapsimplex':
normalized = projection_simplex_sort(prevalences)
elif method=='softmax':
normalized = softmax(prevalences)
elif method=='condsoftmax':
normalized = condsoftmax(prevalences)
else:
raise ValueError(f'unknown {method=}, valid ones are ["l1", "clip", "mapsimplex", "softmax"]')
return normalized
def l1_norm(prevalences: ArrayLike) -> np.ndarray:
"""
Applies L1 normalization to the `unnormalized_arr` so that it becomes a valid prevalence
vector. Zero vectors are mapped onto the uniform distribution. Raises an exception if
the resulting vectors are not valid distributions. This may happen when the original
prevalence vectors contain negative values. Use the `clip` normalization function
instead to avoid this possibility.
:param prevalences: array-like of shape `(n_classes,)` or of shape `(n_samples, n_classes,)` with prevalence values
:return: np.ndarray representing a valid distribution
"""
n_classes = prevalences.shape[-1]
accum = prevalences.sum(axis=-1, keepdims=True)
prevalences = np.true_divide(prevalences, accum, where=accum > 0)
allzeros = accum.flatten() == 0
if any(allzeros):
if prevalences.ndim == 1:
prevalences = np.full(shape=n_classes, fill_value=1. / n_classes)
else:
prevalences[allzeros] = np.full(shape=n_classes, fill_value=1. / n_classes)
return prevalences
def clip(prevalences: ArrayLike) -> np.ndarray:
"""
Clips the values in [0,1] and then applies the L1 normalization.
:param prevalences: array-like of shape `(n_classes,)` or of shape `(n_samples, n_classes,)` with prevalence values
:return: np.ndarray representing a valid distribution
"""
clipped = np.clip(prevalences, 0, 1)
normalized = l1_norm(clipped)
return normalized
def projection_simplex_sort(unnormalized_arr: ArrayLike) -> np.ndarray:
"""Projects a point onto the probability simplex.
The code is adapted from Mathieu Blondel's BSD-licensed
`implementation <https://gist.github.com/mblondel/6f3b7aaad90606b98f71>`_
(see function `projection_simplex_sort` in their repo) which is accompanying the paper
Mathieu Blondel, Akinori Fujino, and Naonori Ueda.
Large-scale Multiclass Support Vector Machine Training via Euclidean Projection onto the Simplex,
ICPR 2014, `URL <http://www.mblondel.org/publications/mblondel-icpr2014.pdf>`_
:param `unnormalized_arr`: point in n-dimensional space, shape `(n,)`
:return: projection of `unnormalized_arr` onto the (n-1)-dimensional probability simplex, shape `(n,)`
"""
unnormalized_arr = np.asarray(unnormalized_arr)
n = len(unnormalized_arr)
u = np.sort(unnormalized_arr)[::-1]
cssv = np.cumsum(u) - 1.0
ind = np.arange(1, n + 1)
cond = u - cssv / ind > 0
rho = ind[cond][-1]
theta = cssv[cond][-1] / float(rho)
return np.maximum(unnormalized_arr - theta, 0)
def softmax(prevalences: ArrayLike) -> np.ndarray:
"""
Applies the softmax function to all vectors even if the original vectors were valid distributions.
If you want to leave valid vectors untouched, use condsoftmax instead.
:param prevalences: array-like of shape `(n_classes,)` or of shape `(n_samples, n_classes,)` with prevalence values
:return: np.ndarray representing a valid distribution
"""
normalized = scipy.special.softmax(prevalences, axis=-1)
return normalized
def condsoftmax(prevalences: ArrayLike) -> np.ndarray:
"""
Applies the softmax function only to vectors that do not represent valid distributions.
:param prevalences: array-like of shape `(n_classes,)` or of shape `(n_samples, n_classes,)` with prevalence values
:return: np.ndarray representing a valid distribution
"""
invalid_idx = ~ check_prevalence_vector(prevalences, aggr=False, raise_exception=False)
if isinstance(invalid_idx, np.bool_) and invalid_idx:
# only one vector
normalized = scipy.special.softmax(prevalences)
else:
prevalences = np.copy(prevalences)
prevalences[invalid_idx] = scipy.special.softmax(prevalences[invalid_idx], axis=-1)
normalized = prevalences
return normalized
# ------------------------------------------------------------------------------------------
# Divergences
# ------------------------------------------------------------------------------------------
def HellingerDistance(P: np.ndarray, Q: np.ndarray) -> float:
""" """
Computes the Hellingher Distance (HD) between (discretized) distributions `P` and `Q`. Computes the Hellingher Distance (HD) between (discretized) distributions `P` and `Q`.
The HD for two discrete distributions of `k` bins is defined as: The HD for two discrete distributions of `k` bins is defined as:
@ -111,7 +338,7 @@ def HellingerDistance(P, Q) -> float:
return np.sqrt(np.sum((np.sqrt(P) - np.sqrt(Q))**2)) return np.sqrt(np.sum((np.sqrt(P) - np.sqrt(Q))**2))
def TopsoeDistance(P, Q, epsilon=1e-20): def TopsoeDistance(P: np.ndarray, Q: np.ndarray, epsilon: float=1e-20):
""" """
Topsoe distance between two (discretized) distributions `P` and `Q`. Topsoe distance between two (discretized) distributions `P` and `Q`.
The Topsoe distance for two discrete distributions of `k` bins is defined as: The Topsoe distance for two discrete distributions of `k` bins is defined as:
@ -127,7 +354,130 @@ def TopsoeDistance(P, Q, epsilon=1e-20):
return np.sum(P*np.log((2*P+epsilon)/(P+Q+epsilon)) + Q*np.log((2*Q+epsilon)/(P+Q+epsilon))) return np.sum(P*np.log((2*P+epsilon)/(P+Q+epsilon)) + Q*np.log((2*Q+epsilon)/(P+Q+epsilon)))
def uniform_prevalence_sampling(n_classes, size=1): def get_divergence(divergence: Union[str, Callable]):
"""
Guarantees that the divergence received as argument is a function. That is, if this argument is already
a callable, then it is returned, if it is instead a string, then tries to instantiate the corresponding
divergence from the string name.
:param divergence: callable or string indicating the name of the divergence function
:return: callable
"""
if isinstance(divergence, str):
if divergence=='HD':
return HellingerDistance
elif divergence=='topsoe':
return TopsoeDistance
else:
raise ValueError(f'unknown divergence {divergence}')
elif callable(divergence):
return divergence
else:
raise ValueError(f'argument "divergence" not understood; use a str or a callable function')
# ------------------------------------------------------------------------------------------
# Solvers
# ------------------------------------------------------------------------------------------
def argmin_prevalence(loss: Callable,
n_classes: int,
method: Literal["optim_minimize", "linear_search", "ternary_search"]='optim_minimize'):
"""
Searches for the prevalence vector that minimizes a loss function.
:param loss: callable, the function to minimize
:param n_classes: int, number of classes
:param method: string indicating the search strategy. Possible values are::
'optim_minimize': uses scipy.optim
'linear_search': carries out a linear search for binary problems in the space [0, 0.01, 0.02, ..., 1]
'ternary_search': implements the ternary search (not yet implemented)
:return: np.ndarray, a prevalence vector
"""
if method == 'optim_minimize':
return optim_minimize(loss, n_classes)
elif method == 'linear_search':
return linear_search(loss, n_classes)
elif method == 'ternary_search':
ternary_search(loss, n_classes)
else:
raise NotImplementedError()
def optim_minimize(loss: Callable, n_classes: int):
"""
Searches for the optimal prevalence values, i.e., an `n_classes`-dimensional vector of the (`n_classes`-1)-simplex
that yields the smallest lost. This optimization is carried out by means of a constrained search using scipy's
SLSQP routine.
:param loss: (callable) the function to minimize
:param n_classes: (int) the number of classes, i.e., the dimensionality of the prevalence vector
:return: (ndarray) the best prevalence vector found
"""
from scipy import optimize
# the initial point is set as the uniform distribution
uniform_distribution = np.full(fill_value=1 / n_classes, shape=(n_classes,))
# solutions are bounded to those contained in the unit-simplex
bounds = tuple((0, 1) for _ in range(n_classes)) # values in [0,1]
constraints = ({'type': 'eq', 'fun': lambda x: 1 - sum(x)}) # values summing up to 1
r = optimize.minimize(loss, x0=uniform_distribution, method='SLSQP', bounds=bounds, constraints=constraints)
return r.x
def linear_search(loss: Callable, n_classes: int):
"""
Performs a linear search for the best prevalence value in binary problems. The search is carried out by exploring
the range [0,1] stepping by 0.01. This search is inefficient, and is added only for completeness (some of the
early methods in quantification literature used it, e.g., HDy). A most powerful alternative is `optim_minimize`.
:param loss: (callable) the function to minimize
:param n_classes: (int) the number of classes, i.e., the dimensionality of the prevalence vector
:return: (ndarray) the best prevalence vector found
"""
assert n_classes==2, 'linear search is only available for binary problems'
prev_selected, min_score = None, None
for prev in prevalence_linspace(grid_points=100, repeats=1, smooth_limits_epsilon=0.0):
score = loss(np.asarray([1 - prev, prev]))
if min_score is None or score < min_score:
prev_selected, min_score = prev, score
return np.asarray([1 - prev_selected, prev_selected])
def ternary_search(loss: Callable, n_classes: int):
raise NotImplementedError()
# ------------------------------------------------------------------------------------------
# Sampling utils
# ------------------------------------------------------------------------------------------
def prevalence_linspace(grid_points:int=21, repeats:int=1, smooth_limits_epsilon:float=0.01) -> np.ndarray:
"""
Produces an array of uniformly separated values of prevalence.
By default, produces an array of 21 prevalence values, with
step 0.05 and with the limits smoothed, i.e.:
[0.01, 0.05, 0.10, 0.15, ..., 0.90, 0.95, 0.99]
:param grid_points: the number of prevalence values to sample from the [0,1] interval (default 21)
:param repeats: number of times each prevalence is to be repeated (defaults to 1)
:param smooth_limits_epsilon: the quantity to add and subtract to the limits 0 and 1
:return: an array of uniformly separated prevalence values
"""
p = np.linspace(0., 1., num=grid_points, endpoint=True)
p[0] += smooth_limits_epsilon
p[-1] -= smooth_limits_epsilon
if p[0] > p[1]:
raise ValueError(f'the smoothing in the limits is greater than the prevalence step')
if repeats > 1:
p = np.repeat(p, repeats)
return p
def uniform_prevalence_sampling(n_classes: int, size: int=1) -> np.ndarray:
""" """
Implements the `Kraemer algorithm <http://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf>`_ Implements the `Kraemer algorithm <http://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf>`_
for sampling uniformly at random from the unit simplex. This implementation is adapted from this for sampling uniformly at random from the unit simplex. This implementation is adapted from this
@ -156,21 +506,11 @@ def uniform_prevalence_sampling(n_classes, size=1):
uniform_simplex_sampling = uniform_prevalence_sampling uniform_simplex_sampling = uniform_prevalence_sampling
def strprev(prevalences, prec=3): # ------------------------------------------------------------------------------------------
""" # Adjustment
Returns a string representation for a prevalence vector. E.g., # ------------------------------------------------------------------------------------------
>>> strprev([1/3, 2/3], prec=2) def solve_adjustment_binary(prevalence_estim: ArrayLike, tpr: float, fpr: float, clip: bool=True):
>>> '[0.33, 0.67]'
:param prevalences: a vector of prevalence values
:param prec: float precision
:return: string
"""
return '['+ ', '.join([f'{p:.{prec}f}' for p in prevalences]) + ']'
def adjusted_quantification(prevalence_estim, tpr, fpr, clip=True):
""" """
Implements the adjustment of ACC and PACC for the binary case. The adjustment for a prevalence estimate of the Implements the adjustment of ACC and PACC for the binary case. The adjustment for a prevalence estimate of the
positive class `p` comes down to computing: positive class `p` comes down to computing:
@ -178,10 +518,10 @@ def adjusted_quantification(prevalence_estim, tpr, fpr, clip=True):
.. math:: .. math::
ACC(p) = \\frac{ p - fpr }{ tpr - fpr } ACC(p) = \\frac{ p - fpr }{ tpr - fpr }
:param prevalence_estim: float, the estimated value for the positive class :param float prevalence_estim: the estimated value for the positive class (`p` in the formula)
:param tpr: float, the true positive rate of the classifier :param float tpr: the true positive rate of the classifier
:param fpr: float, the false positive rate of the classifier :param float fpr: the false positive rate of the classifier
:param clip: set to True (default) to clip values that might exceed the range [0,1] :param bool clip: set to True (default) to clip values that might exceed the range [0,1]
:return: float, the adjusted count :return: float, the adjusted count
""" """
@ -194,184 +534,75 @@ def adjusted_quantification(prevalence_estim, tpr, fpr, clip=True):
return adjusted return adjusted
def normalize_prevalence(prevalences): def solve_adjustment(
class_conditional_rates: np.ndarray,
unadjusted_counts: np.ndarray,
method: Literal["inversion", "invariant-ratio"],
solver: Literal["exact", "minimize", "exact-raise", "exact-cc"]) -> np.ndarray:
""" """
Normalize a vector or matrix of prevalence values. The normalization consists of applying a L1 normalization in Function that tries to solve for :math:`p` the equation :math:`q = M p`, where :math:`q` is the vector of
cases in which the prevalence values are not all-zeros, and to convert the prevalence values into `1/n_classes` in `unadjusted counts` (as estimated, e.g., via classify and count) with :math:`q_i` an estimate of
cases in which all values are zero. :math:`P(\hat{Y}=y_i)`, and where :math:`M` is the matrix of `class-conditional rates` with :math:`M_{ij}` an
estimate of :math:`P(\hat{Y}=y_i|Y=y_j)`.
:param prevalences: array-like of shape `(n_classes,)` or of shape `(n_samples, n_classes,)` with prevalence values :param class_conditional_rates: array of shape `(n_classes, n_classes,)` with entry `(i,j)` being the estimate
:return: a normalized vector or matrix of prevalence values of :math:`P(\hat{Y}=y_i|Y=y_j)`, that is, the probability that an instance that belongs to class :math:`y_j`
ends up being classified as belonging to class :math:`y_i`
:param unadjusted_counts: array of shape `(n_classes,)` containing the unadjusted prevalence values (e.g., as
estimated by CC or PCC)
:param str method: indicates the adjustment method to be used. Valid options are:
* `inversion`: tries to solve the equation :math:`q = M p` as :math:`p = M^{-1} q` where
:math:`M^{-1}` is the matrix inversion of :math:`M`. This inversion may not exist in
degenerated cases.
* `invariant-ratio`: invariant ratio estimator of `Vaz et al. 2018 <https://jmlr.org/papers/v20/18-456.html>`_,
which replaces the last equation in :math:`M` with the normalization condition (i.e., that the sum of
all prevalence values must equal 1).
:param str solver: the method to use for solving the system of linear equations. Valid options are:
* `exact-raise`: tries to solve the system using matrix inversion. Raises an error if the matrix has rank
strictly lower than `n_classes`.
* `exact-cc`: if the matrix is not full rank, returns :math:`q` (i.e., the unadjusted counts) as the estimates
* `exact`: deprecated, defaults to 'exact-cc' (will be removed in future versions)
* `minimize`: minimizes a loss, so the solution always exists
""" """
prevalences = np.asarray(prevalences) if solver == "exact":
n_classes = prevalences.shape[-1] warnings.warn(
accum = prevalences.sum(axis=-1, keepdims=True) "The 'exact' solver is deprecated. Use 'exact-raise' or 'exact-cc'", DeprecationWarning, stacklevel=2)
prevalences = np.true_divide(prevalences, accum, where=accum>0) solver = "exact-cc"
allzeros = accum.flatten()==0
if any(allzeros): A = np.asarray(class_conditional_rates, dtype=float)
if prevalences.ndim == 1: B = np.asarray(unadjusted_counts, dtype=float)
prevalences = np.full(shape=n_classes, fill_value=1./n_classes)
if method == "inversion":
pass # We leave A and B unchanged
elif method == "invariant-ratio":
# Change the last equation to replace it with the normalization condition
A[-1, :] = 1.0
B[-1] = 1.0
else: else:
prevalences[accum.flatten()==0] = np.full(shape=n_classes, fill_value=1./n_classes) raise ValueError(f"unknown {method=}")
return prevalences
if solver == "minimize":
def __num_prevalence_combinations_depr(n_prevpoints:int, n_classes:int, n_repeats:int=1): def loss(prev):
""" return np.linalg.norm(A @ prev - B)
Computes the number of prevalence combinations in the n_classes-dimensional simplex if `nprevpoints` equally distant return optim_minimize(loss, n_classes=A.shape[0])
prevalence values are generated and `n_repeats` repetitions are requested. elif solver in ["exact-raise", "exact-cc"]:
# Solvers based on matrix inversion, so we use try/except block
:param n_classes: integer, number of classes try:
:param n_prevpoints: integer, number of prevalence points. return np.linalg.solve(A, B)
:param n_repeats: integer, number of repetitions for each prevalence combination except np.linalg.LinAlgError:
:return: The number of possible combinations. For example, if n_classes=2, n_prevpoints=5, n_repeats=1, then the # The matrix is not invertible.
number of possible combinations are 5, i.e.: [0,1], [0.25,0.75], [0.50,0.50], [0.75,0.25], and [1.0,0.0] # Depending on the solver, we either raise an error
""" # or return the classifier predictions without adjustment
__cache={} if solver == "exact-raise":
def __f(nc,np): raise
if (nc,np) in __cache: # cached result elif solver == "exact-cc":
return __cache[(nc,np)] return unadjusted_counts
if nc==1: # stop condition
return 1
else: # recursive call
x = sum([__f(nc-1, np-i) for i in range(np)])
__cache[(nc,np)] = x
return x
return __f(n_classes, n_prevpoints) * n_repeats
def num_prevalence_combinations(n_prevpoints:int, n_classes:int, n_repeats:int=1):
"""
Computes the number of valid prevalence combinations in the n_classes-dimensional simplex if `n_prevpoints` equally
distant prevalence values are generated and `n_repeats` repetitions are requested.
The computation comes down to calculating:
.. math::
\\binom{N+C-1}{C-1} \\times r
where `N` is `n_prevpoints-1`, i.e., the number of probability mass blocks to allocate, `C` is the number of
classes, and `r` is `n_repeats`. This solution comes from the
`Stars and Bars <https://brilliant.org/wiki/integer-equations-star-and-bars/>`_ problem.
:param n_classes: integer, number of classes
:param n_prevpoints: integer, number of prevalence points.
:param n_repeats: integer, number of repetitions for each prevalence combination
:return: The number of possible combinations. For example, if n_classes=2, n_prevpoints=5, n_repeats=1, then the
number of possible combinations are 5, i.e.: [0,1], [0.25,0.75], [0.50,0.50], [0.75,0.25], and [1.0,0.0]
"""
N = n_prevpoints-1
C = n_classes
r = n_repeats
return int(scipy.special.binom(N + C - 1, C - 1) * r)
def get_nprevpoints_approximation(combinations_budget:int, n_classes:int, n_repeats:int=1):
"""
Searches for the largest number of (equidistant) prevalence points to define for each of the `n_classes` classes so
that the number of valid prevalence values generated as combinations of prevalence points (points in a
`n_classes`-dimensional simplex) do not exceed combinations_budget.
:param combinations_budget: integer, maximum number of combinations allowed
:param n_classes: integer, number of classes
:param n_repeats: integer, number of repetitions for each prevalence combination
:return: the largest number of prevalence points that generate less than combinations_budget valid prevalences
"""
assert n_classes > 0 and n_repeats > 0 and combinations_budget > 0, 'parameters must be positive integers'
n_prevpoints = 1
while True:
combinations = num_prevalence_combinations(n_prevpoints, n_classes, n_repeats)
if combinations > combinations_budget:
return n_prevpoints-1
else: else:
n_prevpoints += 1 raise ValueError(f"Solver {solver} not known.")
def check_prevalence_vector(p, raise_exception=False, toleranze=1e-08):
"""
Checks that p is a valid prevalence vector, i.e., that it contains values in [0,1] and that the values sum up to 1.
:param p: the prevalence vector to check
:return: True if `p` is valid, False otherwise
"""
p = np.asarray(p)
if not all(p>=0):
if raise_exception:
raise ValueError('the prevalence vector contains negative numbers')
return False
if not all(p<=1):
if raise_exception:
raise ValueError('the prevalence vector contains values >1')
return False
if not np.isclose(p.sum(), 1, atol=toleranze):
if raise_exception:
raise ValueError('the prevalence vector does not sum up to 1')
return False
return True
def get_divergence(divergence: Union[str, Callable]):
if isinstance(divergence, str):
if divergence=='HD':
return HellingerDistance
elif divergence=='topsoe':
return TopsoeDistance
else: else:
raise ValueError(f'unknown divergence {divergence}') raise ValueError(f'unknown {solver=}')
elif callable(divergence):
return divergence
else:
raise ValueError(f'argument "divergence" not understood; use a str or a callable function')
def argmin_prevalence(loss, n_classes, method='optim_minimize'):
if method == 'optim_minimize':
return optim_minimize(loss, n_classes)
elif method == 'linear_search':
return linear_search(loss, n_classes)
elif method == 'ternary_search':
raise NotImplementedError()
else:
raise NotImplementedError()
def optim_minimize(loss, n_classes):
"""
Searches for the optimal prevalence values, i.e., an `n_classes`-dimensional vector of the (`n_classes`-1)-simplex
that yields the smallest lost. This optimization is carried out by means of a constrained search using scipy's
SLSQP routine.
:param loss: (callable) the function to minimize
:param n_classes: (int) the number of classes, i.e., the dimensionality of the prevalence vector
:return: (ndarray) the best prevalence vector found
"""
from scipy import optimize
# the initial point is set as the uniform distribution
uniform_distribution = np.full(fill_value=1 / n_classes, shape=(n_classes,))
# solutions are bounded to those contained in the unit-simplex
bounds = tuple((0, 1) for _ in range(n_classes)) # values in [0,1]
constraints = ({'type': 'eq', 'fun': lambda x: 1 - sum(x)}) # values summing up to 1
r = optimize.minimize(loss, x0=uniform_distribution, method='SLSQP', bounds=bounds, constraints=constraints)
return r.x
def linear_search(loss, n_classes):
"""
Performs a linear search for the best prevalence value in binary problems. The search is carried out by exploring
the range [0,1] stepping by 0.01. This search is inefficient, and is added only for completeness (some of the
early methods in quantification literature used it, e.g., HDy). A most powerful alternative is `optim_minimize`.
:param loss: (callable) the function to minimize
:param n_classes: (int) the number of classes, i.e., the dimensionality of the prevalence vector
:return: (ndarray) the best prevalence vector found
"""
assert n_classes==2, 'linear search is only available for binary problems'
prev_selected, min_score = None, None
for prev in prevalence_linspace(n_prevalences=100, repeats=1, smooth_limits_epsilon=0.0):
score = loss(np.asarray([1 - prev, prev]))
if min_score is None or score < min_score:
prev_selected, min_score = prev, score
return np.asarray([1 - prev_selected, prev_selected])

View File

@ -1,6 +1,6 @@
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from copy import deepcopy from copy import deepcopy
from typing import Callable, Union from typing import Callable, Literal, Union
import numpy as np import numpy as np
from abstention.calibration import NoBiasVectorScaling, TempScaling, VectorScaling from abstention.calibration import NoBiasVectorScaling, TempScaling, VectorScaling
from scipy import optimize from scipy import optimize
@ -352,113 +352,6 @@ class CC(AggregativeCrispQuantifier):
return F.prevalence_from_labels(classif_predictions, self.classes_) return F.prevalence_from_labels(classif_predictions, self.classes_)
class ACC(AggregativeCrispQuantifier):
"""
`Adjusted Classify & Count <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_,
the "adjusted" variant of :class:`CC`, that corrects the predictions of CC
according to the `misclassification rates`.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: specifies the data used for generating classifier predictions. This specification
can be made as float in (0, 1) indicating the proportion of stratified held-out validation set to
be extracted from the training set; or as an integer (default 5), indicating that the predictions
are to be generated in a `k`-fold cross-validation manner (with this integer indicating the value
for `k`); or as a collection defining the specific set of data to use for validation.
Alternatively, this set can be specified at fit time by indicating the exact set of data
on which the predictions are to be generated.
:param n_jobs: number of parallel workers
:param solver: indicates the method to be used for obtaining the final estimates. The choice
'exact' comes down to solving the system of linear equations :math:`Ax=B` where `A` is a
matrix containing the class-conditional probabilities of the predictions (e.g., the tpr and fpr in
binary) and `B` is the vector of prevalence values estimated via CC, as :math:`x=A^{-1}B`. This solution
might not exist for degenerated classifiers, in which case the method defaults to classify and count
(i.e., does not attempt any adjustment).
Another option is to search for the prevalence vector that minimizes the L2 norm of :math:`|Ax-B|`. The latter
is achieved by indicating solver='minimize'. This one generally works better, and is the default parameter.
More details about this can be consulted in `Bunse, M. "On Multi-Class Extensions of Adjusted Classify and
Count", on proceedings of the 2nd International Workshop on Learning to Quantify: Methods and Applications
(LQ 2022), ECML/PKDD 2022, Grenoble (France) <https://lq-2022.github.io/proceedings/CompleteVolume.pdf>`_.
"""
def __init__(self, classifier: BaseEstimator, val_split=5, n_jobs=None, solver='minimize'):
self.classifier = classifier
self.val_split = val_split
self.n_jobs = qp._get_njobs(n_jobs)
self.solver = solver
def _check_init_parameters(self):
if self.solver not in ['exact', 'minimize']:
raise ValueError("unknown solver; valid ones are 'exact', 'minimize'")
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
"""
Estimates the misclassification rates.
:param classif_predictions: a :class:`quapy.data.base.LabelledCollection` containing,
as instances, the label predictions issued by the classifier and, as labels, the true labels
:param data: a :class:`quapy.data.base.LabelledCollection` consisting of the training data
"""
pred_labels, true_labels = classif_predictions.Xy
self.cc = CC(self.classifier)
self.Pte_cond_estim_ = self.getPteCondEstim(self.classifier.classes_, true_labels, pred_labels)
@classmethod
def getPteCondEstim(cls, classes, y, y_):
# estimate the matrix with entry (i,j) being the estimate of P(hat_yi|yj), that is, the probability that a
# document that belongs to yj ends up being classified as belonging to yi
conf = confusion_matrix(y, y_, labels=classes).T
conf = conf.astype(float)
class_counts = conf.sum(axis=0)
for i, _ in enumerate(classes):
if class_counts[i] == 0:
conf[i, i] = 1
else:
conf[:, i] /= class_counts[i]
return conf
def aggregate(self, classif_predictions):
prevs_estim = self.cc.aggregate(classif_predictions)
return ACC.solve_adjustment(self.Pte_cond_estim_, prevs_estim, solver=self.solver)
@classmethod
def solve_adjustment(cls, PteCondEstim, prevs_estim, solver='exact'):
"""
Solves the system linear system :math:`Ax = B` with :math:`A` = `PteCondEstim` and :math:`B` = `prevs_estim`
:param PteCondEstim: a `np.ndarray` of shape `(n_classes,n_classes,)` with entry `(i,j)` being the estimate
of :math:`P(y_i|y_j)`, that is, the probability that an instance that belongs to :math:`y_j` ends up being
classified as belonging to :math:`y_i`
:param prevs_estim: a `np.ndarray` of shape `(n_classes,)` with the class prevalence estimates
:param solver: indicates the method to use for solving the system of linear equations. Valid options are
'exact' (tries to solve the system --may fail if the misclassificatin matrix has rank < n_classes) or
'optim_minimize' (minimizes a norm --always exists).
:return: an adjusted `np.ndarray` of shape `(n_classes,)` with the corrected class prevalence estimates
"""
A = PteCondEstim
B = prevs_estim
if solver == 'exact':
# attempts an exact solution of the linear system (may fail)
try:
adjusted_prevs = np.linalg.solve(A, B)
adjusted_prevs = np.clip(adjusted_prevs, 0, 1)
adjusted_prevs /= adjusted_prevs.sum()
except np.linalg.LinAlgError:
adjusted_prevs = prevs_estim # no way to adjust them!
return adjusted_prevs
elif solver == 'minimize':
# poses the problem as an optimization one, and tries to minimize the norm of the differences
def loss(prev):
return np.linalg.norm(A @ prev - B)
return F.optim_minimize(loss, n_classes=A.shape[0])
class PCC(AggregativeSoftQuantifier): class PCC(AggregativeSoftQuantifier):
""" """
`Probabilistic Classify & Count <https://ieeexplore.ieee.org/abstract/document/5694031>`_, `Probabilistic Classify & Count <https://ieeexplore.ieee.org/abstract/document/5694031>`_,
@ -483,41 +376,209 @@ class PCC(AggregativeSoftQuantifier):
return F.prevalence_from_probabilities(classif_posteriors, binarize=False) return F.prevalence_from_probabilities(classif_posteriors, binarize=False)
class PACC(AggregativeSoftQuantifier): class ACC(AggregativeCrispQuantifier):
""" """
`Probabilistic Adjusted Classify & Count <https://ieeexplore.ieee.org/abstract/document/5694031>`_, `Adjusted Classify & Count <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_,
the probabilistic variant of ACC that relies on the posterior probabilities returned by a probabilistic classifier. the "adjusted" variant of :class:`CC`, that corrects the predictions of CC
according to the `misclassification rates`.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: specifies the data used for generating classifier predictions. This specification
can be made as float in (0, 1) indicating the proportion of stratified held-out validation set to
be extracted from the training set; or as an integer (default 5), indicating that the predictions
are to be generated in a `k`-fold cross-validation manner (with this integer indicating the value
for `k`); or as a collection defining the specific set of data to use for validation.
Alternatively, this set can be specified at fit time by indicating the exact set of data
on which the predictions are to be generated.
:param str method: adjustment method to be used:
* 'inversion': matrix inversion method based on the matrix equality :math:`P(C)=P(C|Y)P(Y)`,
which tries to invert :math:`P(C|Y)` matrix.
* 'invariant-ratio': invariant ratio estimator of `Vaz et al. 2018 <https://jmlr.org/papers/v20/18-456.html>`_,
which replaces the last equation with the normalization condition.
:param str solver: indicates the method to use for solving the system of linear equations. Valid options are:
* 'exact-raise': tries to solve the system using matrix inversion. Raises an error if the matrix has rank
strictly less than `n_classes`.
* 'exact-cc': if the matrix is not of full rank, returns `p_c` as the estimates, which corresponds to
no adjustment (i.e., the classify and count method. See :class:`quapy.method.aggregative.CC`)
* 'exact': deprecated, defaults to 'exact-cc'
* 'minimize': minimizes the L2 norm of :math:`|Ax-B|`. This one generally works better, and is the
default parameter. More details about this can be consulted in `Bunse, M. "On Multi-Class Extensions of
Adjusted Classify and Count", on proceedings of the 2nd International Workshop on Learning to Quantify:
Methods and Applications (LQ 2022), ECML/PKDD 2022, Grenoble (France)
<https://lq-2022.github.io/proceedings/CompleteVolume.pdf>`_.
:param str norm: the method to use for normalization.
* `clip`, the values are clipped to the range [0,1] and then L1-normalized.
* `mapsimplex` projects vectors onto the probability simplex. This implementation relies on
`Mathieu Blondel's projection_simplex_sort <https://gist.github.com/mblondel/6f3b7aaad90606b98f71>`_
* `condsoftmax`, applies a softmax normalization only to prevalence vectors that lie outside the simplex
:param n_jobs: number of parallel workers
"""
def __init__(
self,
classifier: BaseEstimator,
val_split=5,
solver: Literal['minimize', 'exact', 'exact-raise', 'exact-cc'] = 'minimize',
method: Literal['inversion', 'invariant-ratio'] = 'inversion',
norm: Literal['clip', 'mapsimplex', 'condsoftmax'] = 'clip',
n_jobs=None,
):
self.classifier = classifier
self.val_split = val_split
self.n_jobs = qp._get_njobs(n_jobs)
self.solver = solver
self.method = method
self.norm = norm
SOLVERS = ['exact', 'minimize', 'exact-raise', 'exact-cc']
METHODS = ['inversion', 'invariant-ratio']
NORMALIZATIONS = ['clip', 'mapsimplex', 'condsoftmax', None]
@classmethod
def newInvariantRatioEstimation(cls, classifier: BaseEstimator, val_split=5, n_jobs=None):
"""
Constructs a quantifier that implements the Invariant Ratio Estimator of
`Vaz et al. 2018 <https://jmlr.org/papers/v20/18-456.html>`_. This amounts
to setting method to 'invariant-ratio' and clipping to 'project'.
:param classifier: a sklearn's Estimator that generates a classifier :param classifier: a sklearn's Estimator that generates a classifier
:param val_split: specifies the data used for generating classifier predictions. This specification :param val_split: specifies the data used for generating classifier predictions. This specification
can be made as float in (0, 1) indicating the proportion of stratified held-out validation set to can be made as float in (0, 1) indicating the proportion of stratified held-out validation set to
be extracted from the training set; or as an integer (default 5), indicating that the predictions be extracted from the training set; or as an integer (default 5), indicating that the predictions
are to be generated in a `k`-fold cross-validation manner (with this integer indicating the value are to be generated in a `k`-fold cross-validation manner (with this integer indicating the value
for `k`). Alternatively, this set can be specified at fit time by indicating the exact set of data for `k`); or as a collection defining the specific set of data to use for validation.
Alternatively, this set can be specified at fit time by indicating the exact set of data
on which the predictions are to be generated. on which the predictions are to be generated.
:param n_jobs: number of parallel workers :param n_jobs: number of parallel workers
:param solver: indicates the method to be used for obtaining the final estimates. The choice :return: an instance of ACC configured so that it implements the Invariant Ratio Estimator
'exact' comes down to solving the system of linear equations :math:`Ax=B` where `A` is a
matrix containing the class-conditional probabilities of the predictions (e.g., the tpr and fpr in
binary) and `B` is the vector of prevalence values estimated via CC, as :math:`x=A^{-1}B`. This solution
might not exist for degenerated classifiers, in which case the method defaults to classify and count
(i.e., does not attempt any adjustment).
Another option is to search for the prevalence vector that minimizes the L2 norm of :math:`|Ax-B|`. The latter
is achieved by indicating solver='minimize'. This one generally works better, and is the default parameter.
More details about this can be consulted in `Bunse, M. "On Multi-Class Extensions of Adjusted Classify and
Count", on proceedings of the 2nd International Workshop on Learning to Quantify: Methods and Applications
(LQ 2022), ECML/PKDD 2022, Grenoble (France) <https://lq-2022.github.io/proceedings/CompleteVolume.pdf>`_.
""" """
return ACC(classifier, val_split=val_split, method='invariant-ratio', norm='mapsimplex', n_jobs=n_jobs)
def __init__(self, classifier: BaseEstimator, val_split=5, n_jobs=None, solver='minimize'): def _check_init_parameters(self):
if self.solver not in ACC.SOLVERS:
raise ValueError(f"unknown solver; valid ones are {ACC.SOLVERS}")
if self.method not in ACC.METHODS:
raise ValueError(f"unknown method; valid ones are {ACC.METHODS}")
if self.norm not in ACC.NORMALIZATIONS:
raise ValueError(f"unknown clipping; valid ones are {ACC.NORMALIZATIONS}")
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
"""
Estimates the misclassification rates.
:param classif_predictions: a :class:`quapy.data.base.LabelledCollection` containing,
as instances, the label predictions issued by the classifier and, as labels, the true labels
:param data: a :class:`quapy.data.base.LabelledCollection` consisting of the training data
"""
pred_labels, true_labels = classif_predictions.Xy
self.cc = CC(self.classifier)
self.Pte_cond_estim_ = ACC.getPteCondEstim(self.classifier.classes_, true_labels, pred_labels)
@classmethod
def getPteCondEstim(cls, classes, y, y_):
"""
Estimate the matrix with entry (i,j) being the estimate of P(hat_yi|yj), that is, the probability that a
document that belongs to yj ends up being classified as belonging to yi
:param classes: array-like with the class names
:param y: array-like with the true labels
:param y_: array-like with the estimated labels
:return: np.ndarray
"""
conf = confusion_matrix(y, y_, labels=classes).T
conf = conf.astype(float)
class_counts = conf.sum(axis=0)
for i, _ in enumerate(classes):
if class_counts[i] == 0:
conf[i, i] = 1
else:
conf[:, i] /= class_counts[i]
return conf
def aggregate(self, classif_predictions):
prevs_estim = self.cc.aggregate(classif_predictions)
estimate = F.solve_adjustment(
class_conditional_rates=self.Pte_cond_estim_,
unadjusted_counts=prevs_estim,
solver=self.solver,
method=self.method,
)
return F.normalize_prevalence(estimate, method=self.norm)
class PACC(AggregativeSoftQuantifier):
"""
`Probabilistic Adjusted Classify & Count <https://ieeexplore.ieee.org/abstract/document/5694031>`_,
the probabilistic variant of ACC that relies on the posterior probabilities returned by a probabilistic classifier.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: specifies the data used for generating classifier predictions. This specification
can be made as float in (0, 1) indicating the proportion of stratified held-out validation set to
be extracted from the training set; or as an integer (default 5), indicating that the predictions
are to be generated in a `k`-fold cross-validation manner (with this integer indicating the value
for `k`). Alternatively, this set can be specified at fit time by indicating the exact set of data
on which the predictions are to be generated.
:param str method: adjustment method to be used:
* 'inversion': matrix inversion method based on the matrix equality :math:`P(C)=P(C|Y)P(Y)`,
which tries to invert `P(C|Y)` matrix.
* 'invariant-ratio': invariant ratio estimator of `Vaz et al. <https://jmlr.org/papers/v20/18-456.html>`_,
which replaces the last equation with the normalization condition.
:param str solver: the method to use for solving the system of linear equations. Valid options are:
* 'exact-raise': tries to solve the system using matrix inversion.
Raises an error if the matrix has rank strictly less than `n_classes`.
* 'exact-cc': if the matrix is not of full rank, returns `p_c` as the estimates, which
corresponds to no adjustment (i.e., the classify and count method. See :class:`quapy.method.aggregative.CC`)
* 'exact': deprecated, defaults to 'exact-cc'
* 'minimize': minimizes the L2 norm of :math:`|Ax-B|`. This one generally works better, and is the
default parameter. More details about this can be consulted in `Bunse, M. "On Multi-Class Extensions
of Adjusted Classify and Count", on proceedings of the 2nd International Workshop on Learning to
Quantify: Methods and Applications (LQ 2022), ECML/PKDD 2022, Grenoble (France)
<https://lq-2022.github.io/proceedings/CompleteVolume.pdf>`_.
:param str norm: the method to use for normalization.
* `clip`, the values are clipped to the range [0,1] and then L1-normalized.
* `mapsimplex` projects vectors onto the probability simplex. This implementation relies on
`Mathieu Blondel's projection_simplex_sort <https://gist.github.com/mblondel/6f3b7aaad90606b98f71>`_
* `condsoftmax`, applies a softmax normalization only to prevalence vectors that lie outside the simplex
:param n_jobs: number of parallel workers
"""
def __init__(
self,
classifier: BaseEstimator,
val_split=5,
solver: Literal['minimize', 'exact', 'exact-raise', 'exact-cc'] = 'minimize',
method: Literal['inversion', 'invariant-ratio'] = 'inversion',
norm: Literal['clip', 'mapsimplex', 'condsoftmax'] = 'clip',
n_jobs=None
):
self.classifier = classifier self.classifier = classifier
self.val_split = val_split self.val_split = val_split
self.n_jobs = qp._get_njobs(n_jobs) self.n_jobs = qp._get_njobs(n_jobs)
self.solver = solver self.solver = solver
self.method = method
self.norm = norm
def _check_init_parameters(self): def _check_init_parameters(self):
assert self.solver in ['exact', 'minimize'], "unknown solver; valid ones are 'exact', 'minimize'" if self.solver not in ACC.SOLVERS:
raise ValueError(f"unknown solver; valid ones are {ACC.SOLVERS}")
if self.method not in ACC.METHODS:
raise ValueError(f"unknown method; valid ones are {ACC.METHODS}")
if self.clipping not in ACC.NORMALIZATIONS:
raise ValueError(f"unknown clipping; valid ones are {ACC.NORMALIZATIONS}")
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection): def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
""" """
@ -529,11 +590,18 @@ class PACC(AggregativeSoftQuantifier):
""" """
posteriors, true_labels = classif_predictions.Xy posteriors, true_labels = classif_predictions.Xy
self.pcc = PCC(self.classifier) self.pcc = PCC(self.classifier)
self.Pte_cond_estim_ = self.getPteCondEstim(self.classifier.classes_, true_labels, posteriors) self.Pte_cond_estim_ = PACC.getPteCondEstim(self.classifier.classes_, true_labels, posteriors)
def aggregate(self, classif_posteriors): def aggregate(self, classif_posteriors):
prevs_estim = self.pcc.aggregate(classif_posteriors) prevs_estim = self.pcc.aggregate(classif_posteriors)
return ACC.solve_adjustment(self.Pte_cond_estim_, prevs_estim, solver=self.solver)
estimate = F.solve_adjustment(
class_conditional_rates=self.Pte_cond_estim_,
unadjusted_counts=prevs_estim,
solver=self.solver,
method=self.method,
)
return F.normalize_prevalence(estimate, method=self.norm)
@classmethod @classmethod
def getPteCondEstim(cls, classes, y, y_): def getPteCondEstim(cls, classes, y, y_):
@ -885,7 +953,7 @@ class HDy(AggregativeSoftQuantifier, BinaryAggregativeQuantifier):
# at small steps (modern implementations resort to an optimization procedure, # at small steps (modern implementations resort to an optimization procedure,
# see class DistributionMatching) # see class DistributionMatching)
prev_selected, min_dist = None, None prev_selected, min_dist = None, None
for prev in F.prevalence_linspace(n_prevalences=101, repeats=1, smooth_limits_epsilon=0.0): for prev in F.prevalence_linspace(grid_points=101, repeats=1, smooth_limits_epsilon=0.0):
Px_train = prev * Pxy1_density + (1 - prev) * Pxy0_density Px_train = prev * Pxy1_density + (1 - prev) * Pxy0_density
hdy = F.HellingerDistance(Px_train, Px_test) hdy = F.HellingerDistance(Px_train, Px_test)
if prev_selected is None or hdy < min_dist: if prev_selected is None or hdy < min_dist:

View File

@ -25,6 +25,7 @@ class Status(Enum):
class ConfigStatus: class ConfigStatus:
def __init__(self, params, status, msg=''): def __init__(self, params, status, msg=''):
self.params = params self.params = params
self.status = status self.status = status