From 49fc486c53c6d3d06717397674a76c7f06952706 Mon Sep 17 00:00:00 2001
From: Alejandro Moreo
Date: Tue, 14 Feb 2023 17:00:50 +0100
Subject: [PATCH] preparing to merge
---
README.md | 31 +--
docs/build/html/Datasets.html | 2 +-
docs/build/html/Evaluation.html | 211 +++++++-----------
docs/build/html/Methods.html | 137 +++++++-----
docs/build/html/Model-Selection.html | 137 ++++++------
docs/build/html/Plotting.html | 45 ++--
docs/build/html/_sources/Datasets.md.txt | 3 +-
docs/build/html/_sources/Evaluation.md.txt | 207 ++++++-----------
docs/build/html/_sources/Methods.md.txt | 134 ++++++-----
.../html/_sources/Model-Selection.md.txt | 137 ++++++------
docs/build/html/_sources/Plotting.md.txt | 45 ++--
docs/build/html/_sources/index.rst.txt | 2 +
docs/build/html/genindex.html | 45 +++-
docs/build/html/index.html | 8 +
docs/build/html/objects.inv | Bin 2822 -> 2928 bytes
docs/build/html/quapy.data.html | 48 ++--
docs/build/html/quapy.html | 194 ++++++++++++++--
docs/build/html/quapy.method.html | 5 +-
docs/build/html/searchindex.js | 2 +-
examples/model_selection.py | 57 +++++
quapy/CHANGE_LOG.txt | 22 +-
quapy/data/base.py | 70 ++++--
quapy/evaluation.py | 10 +-
quapy/model_selection.py | 4 +-
quapy/plot.py | 14 +-
quapy/protocol.py | 9 +
quapy/tests/test_labelcollection.py | 47 ++++
27 files changed, 927 insertions(+), 699 deletions(-)
create mode 100644 examples/model_selection.py
diff --git a/README.md b/README.md
index 10c769f..8f8b7de 100644
--- a/README.md
+++ b/README.md
@@ -13,6 +13,7 @@ for facilitating the analysis and interpretation of the experimental results.
### Last updates:
+* Version 0.1.7 is released! major changes can be consulted [here](quapy/FCHANGE_LOG.txt).
* A detailed documentation is now available [here](https://hlt-isti.github.io/QuaPy/)
* The developer API documentation is available [here](https://hlt-isti.github.io/QuaPy/build/html/modules.html)
@@ -59,13 +60,14 @@ See the [Wiki](https://github.com/HLT-ISTI/QuaPy/wiki) for detailed examples.
## Features
* Implementation of many popular quantification methods (Classify-&-Count and its variants, Expectation Maximization,
-quantification methods based on structured output learning, HDy, QuaNet, and quantification ensembles).
-* Versatile functionality for performing evaluation based on artificial sampling protocols.
+quantification methods based on structured output learning, HDy, QuaNet, quantification ensembles, among others).
+* Versatile functionality for performing evaluation based on sampling generation protocols (e.g., APP, NPP, etc.).
* Implementation of most commonly used evaluation metrics (e.g., AE, RAE, SE, KLD, NKLD, etc.).
* Datasets frequently used in quantification (textual and numeric), including:
* 32 UCI Machine Learning datasets.
* 11 Twitter quantification-by-sentiment datasets.
* 3 product reviews quantification-by-sentiment datasets.
+ * 4 tasks from LeQua competition (_new in v0.1.7!_)
* Native support for binary and single-label multiclass quantification scenarios.
* Model selection functionality that minimizes quantification-oriented loss functions.
* Visualization tools for analysing the experimental results.
@@ -80,29 +82,6 @@ quantification methods based on structured output learning, HDy, QuaNet, and qua
* pandas, xlrd
* matplotlib
-## SVM-perf with quantification-oriented losses
-In order to run experiments involving SVM(Q), SVM(KLD), SVM(NKLD),
-SVM(AE), or SVM(RAE), you have to first download the
-[svmperf](http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html)
-package, apply the patch
-[svm-perf-quantification-ext.patch](./svm-perf-quantification-ext.patch), and compile the sources.
-The script [prepare_svmperf.sh](prepare_svmperf.sh) does all the job. Simply run:
-
-```
-./prepare_svmperf.sh
-```
-
-The resulting directory [svm_perf_quantification](./svm_perf_quantification) contains the
-patched version of _svmperf_ with quantification-oriented losses.
-
-The [svm-perf-quantification-ext.patch](./svm-perf-quantification-ext.patch) is an extension of the patch made available by
-[Esuli et al. 2015](https://dl.acm.org/doi/abs/10.1145/2700406?casa_token=8D2fHsGCVn0AAAAA:ZfThYOvrzWxMGfZYlQW_y8Cagg-o_l6X_PcF09mdETQ4Tu7jK98mxFbGSXp9ZSO14JkUIYuDGFG0)
-that allows SVMperf to optimize for
-the _Q_ measure as proposed by [Barranquero et al. 2015](https://www.sciencedirect.com/science/article/abs/pii/S003132031400291X)
-and for the _KLD_ and _NKLD_ measures as proposed by [Esuli et al. 2015](https://dl.acm.org/doi/abs/10.1145/2700406?casa_token=8D2fHsGCVn0AAAAA:ZfThYOvrzWxMGfZYlQW_y8Cagg-o_l6X_PcF09mdETQ4Tu7jK98mxFbGSXp9ZSO14JkUIYuDGFG0).
-This patch extends the above one by also allowing SVMperf to optimize for
-_AE_ and _RAE_.
-
## Documentation
@@ -113,6 +92,8 @@ are provided:
* [Datasets](https://github.com/HLT-ISTI/QuaPy/wiki/Datasets)
* [Evaluation](https://github.com/HLT-ISTI/QuaPy/wiki/Evaluation)
+* [Protocols](https://github.com/HLT-ISTI/QuaPy/wiki/Protocols)
* [Methods](https://github.com/HLT-ISTI/QuaPy/wiki/Methods)
+* [SVMperf](https://github.com/HLT-ISTI/QuaPy/wiki/ExplicitLossMinimization)
* [Model Selection](https://github.com/HLT-ISTI/QuaPy/wiki/Model-Selection)
* [Plotting](https://github.com/HLT-ISTI/QuaPy/wiki/Plotting)
diff --git a/docs/build/html/Datasets.html b/docs/build/html/Datasets.html
index 9c9eaa7..1636fa0 100644
--- a/docs/build/html/Datasets.html
+++ b/docs/build/html/Datasets.html
@@ -86,7 +86,7 @@ Take a look at the following code: