diff --git a/IEEEProc2025_plots/over_time_experiment.py b/IEEEProc2025_plots/over_time_experiment.py index 3aaca28..d77ee81 100644 --- a/IEEEProc2025_plots/over_time_experiment.py +++ b/IEEEProc2025_plots/over_time_experiment.py @@ -14,7 +14,7 @@ from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression as LR, LogisticRegressionCV from tqdm import tqdm import quapy as qp -from data import LabelledCollection, Dataset +from quapy.data import LabelledCollection, Dataset import quapy.functional as F from method.composable import QUnfoldWrapper from quapy.method.aggregative import DistributionMatchingY, EMQ, KDEyML @@ -165,7 +165,7 @@ def plot_prevalences(results_dict, target_class=1, target_label='positive', save dates_smooth, y_smooth = smooth_curve(dates, target_component) if method=='true-prev': - line,=plt.plot(dates_smooth, y_smooth, label=method, linewidth=3, linestyle='-') + line,=plt.plot(dates_smooth, y_smooth, label=method, linewidth=3, linestyle='-', color='black') else: line,=plt.plot(dates_smooth, y_smooth, label=method, linewidth=2, linestyle='--') plt.plot(dates, target_component, 'o', markersize=10, color=line.get_color()) @@ -259,10 +259,10 @@ else: def methods(): yield 'CC', CC(new_classifier(), fit_classifier=to_fit) yield 'ACC', ACC(new_classifier(), fit_classifier=to_fit) + yield 'SLD', EMQ(new_classifier(), fit_classifier=to_fit) yield 'HDy', DistributionMatchingY(new_classifier(), fit_classifier=to_fit) yield 'HDx', HDxDensify() yield 'KMM', QUnfoldWrapperDensify(KMM()) - yield 'SLD', EMQ(new_classifier(), fit_classifier=to_fit) yield 'KDEy', KDEyML(new_classifier(), fit_classifier=to_fit) diff --git a/IEEEProc2025_plots/plotting_diagonal_4methods.py b/IEEEProc2025_plots/plotting_diagonal_4methods.py index c0991fb..cbc1b9c 100644 --- a/IEEEProc2025_plots/plotting_diagonal_4methods.py +++ b/IEEEProc2025_plots/plotting_diagonal_4methods.py @@ -3,7 +3,7 @@ from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.model_selection import GridSearchCV import quapy as qp -from data import LabelledCollection +from quapy.data import LabelledCollection from method.non_aggregative import DMx from protocol import APP from quapy.method.aggregative import CC, DMy, ACC, EMQ @@ -20,9 +20,9 @@ def cls(): def gen_methods(): yield CC(cls()), r'CC$_{10' + r'\%}$' yield ACC(cls()), 'ACC' + yield EMQ(cls()), 'SLD' yield DMy(cls(), val_split=10, nbins=10, n_jobs=-1), 'HDy' yield DMx(nbins=10, n_jobs=-1), 'HDx' - yield EMQ(cls()), 'SLD' # yield EMQ(cls(), calib='vs'), 'SLD-VS' def gen_data():