redo experiments with auto bandwidth selection

This commit is contained in:
Alejandro Moreo Fernandez 2024-09-27 10:17:37 +02:00
parent 77df9112a3
commit 5bcaa8d1bb
3 changed files with 121 additions and 131 deletions

View File

@ -17,6 +17,8 @@ import quapy.functional as F
epsilon = 1e-10
BANDWIDTH_RANGE = (0.001, 0.2)
class KDEyMLauto(KDEyML):
def __init__(self, classifier: BaseEstimator = None, val_split=5, random_state=None, optim='two_steps'):
self.classifier = qp._get_classifier(classifier)
@ -218,7 +220,7 @@ class KDEyMLauto(KDEyML):
def choose_bandwidth_maxlikelihood_search(self, tr_posteriors, tr_y, te_posteriors, classes):
n_classes = len(classes)
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
init_prev = F.uniform_prevalence(n_classes)
def neglikelihood_band(bandwidth):
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth[0])
@ -268,7 +270,7 @@ def optim_minimize(loss: Callable, init_prev: np.ndarray, return_loss=False):
class KDEyMLauto2(KDEyML):
def __init__(self, classifier: BaseEstimator=None, val_split=5, bandwidth=0.1, random_state=None, reduction=100, max_reduced=500, target='likelihood'):
def __init__(self, classifier: BaseEstimator=None, val_split=5, bandwidth=0.1, random_state=None, reduction=100, max_reduced=500, target='likelihood', search='grid'):
"""
reduction: number of examples per class for automatically setting the bandwidth
"""
@ -281,8 +283,10 @@ class KDEyMLauto2(KDEyML):
self.reduction = reduction
self.max_reduced = max_reduced
self.random_state = random_state
assert target in ['likelihood', 'likelihood+'] or target in qp.error.QUANTIFICATION_ERROR_NAMES, 'unknown target for auto'
assert target in ['likelihood'] or target in qp.error.QUANTIFICATION_ERROR_NAMES, 'unknown target for auto'
assert search in ['grid', 'optim'], 'unknown value for search'
self.target = target
self.search = search
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
if self.bandwidth == 'auto':
@ -303,65 +307,42 @@ class KDEyMLauto2(KDEyML):
if len(train) > tr_length:
train = train.sampling(tr_length)
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
init_prev = F.uniform_prevalence(n_classes=n_classes)
repeats = 25
prot = UPP(val, sample_size=self.reduction, repeats=repeats, random_state=self.random_state)
if self.target == 'likelihood+':
def eval_bandwidth(bandwidth):
mix_densities = self.get_mixture_components(*train.Xy, train.classes_, bandwidth)
loss_accum = 0
for (sample, prevtrue) in prot():
test_densities = [self.pdf(kde_i, sample) for kde_i in mix_densities]
def neg_loglikelihood_bandwidth(bandwidth):
mix_densities = self.get_mixture_components(*train.Xy, train.classes_, bandwidth)
def neg_loglikelihood_prev(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
nll = -np.sum(test_loglikelihood)
return nll
loss_accum = 0
for (sample, prevtrue) in prot():
test_densities = [self.pdf(kde_i, sample) for kde_i in mix_densities]
if self.target == 'likelihood':
loss_fn = neg_loglikelihood_prev
else:
loss_fn = lambda prev_hat: qp.error.from_name(self.target)(prev, prev_hat)
def neg_loglikelihood_prev(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
nll = -np.sum(test_loglikelihood)
return nll
pred_prev, neglikelihood = optim_minimize(loss_fn, init_prev, return_loss=True)
loss_accum += neglikelihood
return loss_accum
pred_prev, neglikelihood = optim_minimize(neg_loglikelihood_prev, init_prev, return_loss=True)
# print(f'\t\tprev={F.strprev(pred_prev)} (true={F.strprev(prev)}) got {neglikelihood=}')
loss_accum += neglikelihood
return loss_accum
r = optimize.minimize_scalar(neg_loglikelihood_bandwidth, bounds=(0.00001, 0.2))
if self.search == 'optim':
r = optimize.minimize_scalar(eval_bandwidth, bounds=(0.001, 0.2), options={'xatol': 0.005})
best_band = r.x
best_loss_value = r.fun
nit = r.nit
# assert r.success, 'Process did not converge!'
#found bandwidth=0.00994664 after nit=3 iterations loss_val=-212247.24305)
else:
best_band = None
best_loss_value = None
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
for bandwidth in np.logspace(-4, np.log10(0.2), 20):
mix_densities = self.get_mixture_components(*train.Xy, train.classes_, bandwidth)
loss_accum = 0
for (sample, prev) in tqdm(prot(), total=repeats):
test_densities = [self.pdf(kde_i, sample) for kde_i in mix_densities]
def neg_loglikelihood_prev_(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
return -np.sum(test_loglikelihood)
if self.target == 'likelihood':
loss_fn = neg_loglikelihood_prev_
else:
loss_fn = lambda prev_hat: qp.error.from_name(self.target)(prev, prev_hat)
pred_prev, loss_val = optim_minimize(loss_fn, init_prev, return_loss=True)
loss_accum += loss_val
if best_loss_value is None or loss_accum < best_loss_value:
best_loss_value = loss_accum
best_band = bandwidth
elif self.search=='grid':
nit=20
band_evals = [(band, eval_bandwidth(band)) for band in np.logspace(-4, np.log10(0.2), num=nit)]
best_band, best_loss_value = sorted(band_evals, key=lambda x:x[1])[0]
print(f'found bandwidth={best_band:.8f} after {nit=} iterations loss_val={best_loss_value:.5f})')
self.bandwidth_ = best_band

View File

@ -22,7 +22,7 @@ def newLR():
# typical hyperparameters explored for Logistic Regression
logreg_grid = {
'C': np.logspace(-3,3,7),
'C': np.logspace(-4,4,9),
'class_weight': [None, 'balanced']
}
@ -34,14 +34,16 @@ def wrap_hyper(classifier_hyper_grid: dict):
METHODS = [
('PACC', PACC(newLR()), wrap_hyper(logreg_grid)),
('EMQ', EMQ(newLR()), wrap_hyper(logreg_grid)),
('KDEy-ML', KDEyML(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.logspace(-4, np.log10(0.2), 20)}}),
('KDEy', KDEyML(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.logspace(-4, np.log10(0.2), 20)}}),
# ('KDEy-MLred', KDEyMLred(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.logspace(-4, np.log10(0.2), 20)}}),
('KDEy-ML-scott', KDEyML(newLR(), bandwidth='scott'), wrap_hyper(logreg_grid)),
('KDEy-ML-silver', KDEyML(newLR(), bandwidth='silverman'), wrap_hyper(logreg_grid)),
('KDEy-ML-autoLike', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood'), wrap_hyper(logreg_grid)),
('KDEy-ML-autoLike+', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood+'), wrap_hyper(logreg_grid)),
('KDEy-ML-autoAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mae'), wrap_hyper(logreg_grid)),
('KDEy-ML-autoRAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mrae'), wrap_hyper(logreg_grid)),
('KDEy-scott', KDEyML(newLR(), bandwidth='scott'), wrap_hyper(logreg_grid)),
('KDEy-silver', KDEyML(newLR(), bandwidth='silverman'), wrap_hyper(logreg_grid)),
('KDEy-NLL', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood', search='grid'), wrap_hyper(logreg_grid)),
('KDEy-NLL+', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood', search='optim'), wrap_hyper(logreg_grid)),
('KDEy-AE', KDEyMLauto2(newLR(), bandwidth='auto', target='mae', search='grid'), wrap_hyper(logreg_grid)),
('KDEy-AE+', KDEyMLauto2(newLR(), bandwidth='auto', target='mae', search='optim'), wrap_hyper(logreg_grid)),
('KDEy-RAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mrae', search='grid'), wrap_hyper(logreg_grid)),
('KDEy-RAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mrae', search='optim'), wrap_hyper(logreg_grid)),
]
@ -80,12 +82,80 @@ def show_results(result_path):
print(pv)
def run_experiment(method_name, quantifier, param_grid):
print('Init method', method_name)
with open(global_result_path + '.csv', 'at') as csv:
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS:
print('init', dataset)
# run_experiment(global_result_path, method_name, quantifier, param_grid, dataset)
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
if os.path.exists(local_result_path):
print(f'result file {local_result_path} already exist; skipping')
report = qp.util.load_report(local_result_path)
else:
with qp.util.temp_seed(SEED):
data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True)
train, test = data.train_test
transductive_names = [name for (name, *_) in TRANSDUCTIVE_METHODS]
if method_name not in transductive_names:
if len(param_grid) == 0:
t_init = time()
quantifier.fit(train)
train_time = time() - t_init
else:
# model selection (train)
train, val = train.split_stratified(random_state=SEED)
protocol = UPP(val, repeats=n_bags_val)
modsel = GridSearchQ(
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae'
)
t_init = time()
try:
modsel.fit(train)
print(f'best params {modsel.best_params_}')
print(f'best score {modsel.best_score_}')
quantifier = modsel.best_model()
except:
print('something went wrong... trying to fit the default model')
quantifier.fit(train)
train_time = time() - t_init
else:
# transductive
t_init = time()
quantifier.fit(train) # <-- nothing actually (proyects the X into posteriors only)
train_time = time() - t_init
# test
t_init = time()
protocol = UPP(test, repeats=n_bags_test)
report = qp.evaluation.evaluation_report(
quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'], verbose=True
)
test_time = time() - t_init
report['tr_time'] = train_time
report['te_time'] = test_time
report.to_csv(local_result_path)
means = report.mean(numeric_only=True)
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n')
csv.flush()
if __name__ == '__main__':
qp.environ['SAMPLE_SIZE'] = 500
qp.environ['N_JOBS'] = -1
n_bags_val = 25
n_bags_test = 100
n_bags_val = 100
n_bags_test = 500
result_dir = f'results_quantification/ucimulti'
os.makedirs(result_dir, exist_ok=True)
@ -95,69 +165,6 @@ if __name__ == '__main__':
csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\tTR-TIME\tTE-TIME\n')
for method_name, quantifier, param_grid in METHODS + TRANSDUCTIVE_METHODS:
print('Init method', method_name)
with open(global_result_path + '.csv', 'at') as csv:
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS:
print('init', dataset)
# run_experiment(global_result_path, method_name, quantifier, param_grid, dataset)
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
if os.path.exists(local_result_path):
print(f'result file {local_result_path} already exist; skipping')
report = qp.util.load_report(local_result_path)
else:
with qp.util.temp_seed(SEED):
data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True)
train, test = data.train_test
transductive_names = [name for (name, *_) in TRANSDUCTIVE_METHODS]
if method_name not in transductive_names:
if len(param_grid) == 0:
t_init = time()
quantifier.fit(train)
train_time = time() - t_init
else:
# model selection (train)
train, val = train.split_stratified(random_state=SEED)
protocol = UPP(val, repeats=n_bags_val)
modsel = GridSearchQ(
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae'
)
t_init = time()
try:
modsel.fit(train)
print(f'best params {modsel.best_params_}')
print(f'best score {modsel.best_score_}')
quantifier = modsel.best_model()
except:
print('something went wrong... trying to fit the default model')
quantifier.fit(train)
train_time = time() - t_init
else:
# transductive
t_init = time()
quantifier.fit(train) # <-- nothing actually (proyects the X into posteriors only)
train_time = time() - t_init
# test
t_init = time()
protocol = UPP(test, repeats=n_bags_test)
report = qp.evaluation.evaluation_report(
quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'], verbose=True
)
test_time = time() - t_init
report['tr_time'] = train_time
report['te_time'] = test_time
report.to_csv(local_result_path)
means = report.mean(numeric_only=True)
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n')
csv.flush()
run_experiment(method_name, quantifier, param_grid)
show_results(global_result_path)

View File

@ -182,8 +182,10 @@ for i, dataset in enumerate(tqdm(DATASETS, desc='processing datasets', total=len
if show_mse:
measurements.append(MSE_error_te)
measurement_names.append('MSE')
measurements.append(LIKE_value_te)
measurement_names.append('NLL')
measurements.append(normalize_metric(LIKE_value_te))
measurements.append(normalize_metric(LIKE_value_tr))
measurement_names.append('NLL(te)')
measurement_names.append('NLL(tr)')
if normalize:
measurements = [normalize_metric(m) for m in measurements]
@ -192,12 +194,12 @@ for i, dataset in enumerate(tqdm(DATASETS, desc='processing datasets', total=len
# Train-Test measurements
# ----------------------------------------------------------------------------------------------------
measurements = []
measurement_names = []
measurements.append(normalize_metric(LIKE_value_te))
measurements.append(normalize_metric(LIKE_value_tr))
measurement_names.append('NLL(te)')
measurement_names.append('NLL(tr)')
# measurements = []
# measurement_names = []
# measurements.append(normalize_metric(LIKE_value_te))
# measurements.append(normalize_metric(LIKE_value_tr))
# measurement_names.append('NLL(te)')
# measurement_names.append('NLL(tr)')
plot(xaxis, measurements, measurement_names, suffix='AVEtr')