update doc
This commit is contained in:
parent
2bd47f0841
commit
5deb92b457
5
TODO.txt
5
TODO.txt
|
@ -1,4 +1,3 @@
|
|||
Looks like there are some "multilingual" stuff in the master branch? See, e.g., MultilingualLabelledCollection in data/base.py
|
||||
|
||||
Packaging:
|
||||
==========================================
|
||||
|
@ -13,8 +12,8 @@ Unify ThresholdOptimization methods, as an extension of PACC (and not ACC), the
|
|||
use a prob classifier (take into account that PACC uses pcc internally, whereas the threshold methods use cc
|
||||
instead). The fit method of ACC and PACC has a block for estimating the validation estimates that should be unified
|
||||
as well...
|
||||
Rename APP NPP
|
||||
Add NPP as an option for GridSearchQ
|
||||
Refactor protocols. APP and NPP related functionalities are duplicated in functional, LabelledCollection, and evaluation
|
||||
|
||||
|
||||
New features:
|
||||
==========================================
|
||||
|
|
|
@ -400,6 +400,8 @@
|
|||
<table style="width: 100%" class="indextable genindextable"><tr>
|
||||
<td style="width: 33%; vertical-align: top;"><ul>
|
||||
<li><a href="quapy.html#quapy.evaluation.gen_prevalence_prediction">gen_prevalence_prediction() (in module quapy.evaluation)</a>
|
||||
</li>
|
||||
<li><a href="quapy.html#quapy.evaluation.gen_prevalence_report">gen_prevalence_report() (in module quapy.evaluation)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.neural.QuaNetTrainer.get_aggregative_estims">get_aggregative_estims() (quapy.method.neural.QuaNetTrainer method)</a>
|
||||
</li>
|
||||
|
|
Binary file not shown.
|
@ -238,11 +238,12 @@ from the labels. The classes must be indicated in cases in which some of the lab
|
|||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.artificial_sampling_generator">
|
||||
<span class="sig-name descname"><span class="pre">artificial_sampling_generator</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_prevalences</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">101</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.artificial_sampling_generator" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>A generator of samples that implements the artificial prevalence protocol (APP). The APP consists of exploring
|
||||
a grid of prevalence values (e.g., [0, 0.05, 0.1, 0.15, …, 1]), and generating all valid combinations of
|
||||
<dd><p>A generator of samples that implements the artificial prevalence protocol (APP).
|
||||
The APP consists of exploring a grid of prevalence values containing <cite>n_prevalences</cite> points (e.g.,
|
||||
[0, 0.05, 0.1, 0.15, …, 1], if <cite>n_prevalences=21</cite>), and generating all valid combinations of
|
||||
prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], …,
|
||||
[1, 0, 0] prevalence values of size <cite>sample_size</cite> will be yielded). The number of samples for each valid
|
||||
combination of prevalence values is indicated by <cite>repeats</cite></p>
|
||||
combination of prevalence values is indicated by <cite>repeats</cite>.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
|
|
|
@ -514,82 +514,276 @@ will be taken from the environment variable <cite>SAMPLE_SIZE</cite> (which has
|
|||
<span id="quapy-evaluation-module"></span><h2>quapy.evaluation module<a class="headerlink" href="#module-quapy.evaluation" title="Permalink to this headline">¶</a></h2>
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.evaluation.artificial_prevalence_prediction">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">artificial_prevalence_prediction</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_prevpoints</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">210</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_repetitions</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eval_budget</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">42</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.artificial_prevalence_prediction" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Performs the predictions for all samples generated according to the artificial sampling protocol.</p>
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">artificial_prevalence_prediction</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_prevpoints</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">101</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eval_budget</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">42</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.artificial_prevalence_prediction" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Performs the predictions for all samples generated according to the Artificial Prevalence Protocol (APP).
|
||||
The APP consists of exploring a grid of prevalence values containing <cite>n_prevalences</cite> points (e.g.,
|
||||
[0, 0.05, 0.1, 0.15, …, 1], if <cite>n_prevalences=21</cite>), and generating all valid combinations of
|
||||
prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], …,
|
||||
[1, 0, 0] prevalence values of size <cite>sample_size</cite> will be considered). The number of samples for each valid
|
||||
combination of prevalence values is indicated by <cite>repeats</cite>.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>model</strong> – the model in charge of generating the class prevalence estimations</p></li>
|
||||
<li><p><strong>test</strong> – the test set on which to perform arificial sampling</p></li>
|
||||
<li><p><strong>sample_size</strong> – the size of the samples</p></li>
|
||||
<li><p><strong>n_prevpoints</strong> – the number of different prevalences to sample (or set to None if eval_budget is specified)</p></li>
|
||||
<li><p><strong>n_repetitions</strong> – the number of repetitions for each prevalence</p></li>
|
||||
<li><p><strong>eval_budget</strong> – if specified, sets a ceil on the number of evaluations to perform. For example, if there are 3</p></li>
|
||||
<li><p><strong>test</strong> – the test set on which to perform APP</p></li>
|
||||
<li><p><strong>sample_size</strong> – integer, the size of the samples</p></li>
|
||||
<li><p><strong>n_prevpoints</strong> – integer, the number of different prevalences to sample (or set to None if eval_budget
|
||||
is specified; default 101, i.e., steps of 1%)</p></li>
|
||||
<li><p><strong>repeats</strong> – integer, the number of repetitions for each prevalence (default 1)</p></li>
|
||||
<li><p><strong>eval_budget</strong> – integer, if specified, sets a ceil on the number of evaluations to perform. For example, if
|
||||
there are 3 classes, <cite>repeats=1</cite>, and <cite>eval_budget=20</cite>, then <cite>n_prevpoints</cite> will be set to 5, since this
|
||||
will generate 15 different prevalence vectors ([0, 0, 1], [0, 0.25, 0.75], [0, 0.5, 0.5] … [1, 0, 0]) and
|
||||
since setting <cite>n_prevpoints=6</cite> would produce more than 20 evaluations.</p></li>
|
||||
<li><p><strong>n_jobs</strong> – integer, number of jobs to be run in parallel (default 1)</p></li>
|
||||
<li><p><strong>random_seed</strong> – integer, allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process (default 42)</p></li>
|
||||
<li><p><strong>verbose</strong> – if True, shows a progress bar</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>a tuple containing two <cite>np.ndarrays</cite> of shape <cite>(m,n,)</cite> with <cite>m</cite> the number of samples
|
||||
<cite>(n_prevpoints*repeats)</cite> and <cite>n</cite> the number of classes. The first one contains the true prevalence values
|
||||
for the samples generated while the second one contains the prevalence estimations</p>
|
||||
</dd>
|
||||
</dl>
|
||||
<p>classes, n_repetitions=1 and eval_budget=20, then n_prevpoints will be set to 5, since this will generate 15
|
||||
different prevalences ([0, 0, 1], [0, 0.25, 0.75], [0, 0.5, 0.5] … [1, 0, 0]) and since setting it n_prevpoints
|
||||
to 6 would produce more than 20 evaluations.
|
||||
:param n_jobs: number of jobs to be run in parallel
|
||||
:param random_seed: allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process.
|
||||
:param verbose: if True, shows a progress bar
|
||||
:return: two ndarrays of shape (m,n) with m the number of samples (n_prevpoints*n_repetitions) and n the</p>
|
||||
<blockquote>
|
||||
<div><p>number of classes. The first one contains the true prevalences for the samples generated while the second one
|
||||
contains the the prevalence estimations</p>
|
||||
</div></blockquote>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.evaluation.artificial_prevalence_protocol">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">artificial_prevalence_protocol</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_prevpoints</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">210</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_repetitions</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eval_budget</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">42</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">error_metric</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'mae'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.artificial_prevalence_protocol" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">artificial_prevalence_protocol</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_prevpoints</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">101</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eval_budget</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">42</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">error_metric</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'mae'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.artificial_prevalence_protocol" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Generates samples according to the Artificial Prevalence Protocol (APP).
|
||||
The APP consists of exploring a grid of prevalence values containing <cite>n_prevalences</cite> points (e.g.,
|
||||
[0, 0.05, 0.1, 0.15, …, 1], if <cite>n_prevalences=21</cite>), and generating all valid combinations of
|
||||
prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], …,
|
||||
[1, 0, 0] prevalence values of size <cite>sample_size</cite> will be considered). The number of samples for each valid
|
||||
combination of prevalence values is indicated by <cite>repeats</cite>.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>model</strong> – the model in charge of generating the class prevalence estimations</p></li>
|
||||
<li><p><strong>test</strong> – the test set on which to perform APP</p></li>
|
||||
<li><p><strong>sample_size</strong> – integer, the size of the samples</p></li>
|
||||
<li><p><strong>n_prevpoints</strong> – integer, the number of different prevalences to sample (or set to None if eval_budget
|
||||
is specified; default 101, i.e., steps of 1%)</p></li>
|
||||
<li><p><strong>repeats</strong> – integer, the number of repetitions for each prevalence (default 1)</p></li>
|
||||
<li><p><strong>eval_budget</strong> – integer, if specified, sets a ceil on the number of evaluations to perform. For example, if
|
||||
there are 3 classes, <cite>repeats=1</cite>, and <cite>eval_budget=20</cite>, then <cite>n_prevpoints</cite> will be set to 5, since this
|
||||
will generate 15 different prevalence vectors ([0, 0, 1], [0, 0.25, 0.75], [0, 0.5, 0.5] … [1, 0, 0]) and
|
||||
since setting <cite>n_prevpoints=6</cite> would produce more than 20 evaluations.</p></li>
|
||||
<li><p><strong>n_jobs</strong> – integer, number of jobs to be run in parallel (default 1)</p></li>
|
||||
<li><p><strong>random_seed</strong> – integer, allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process (default 42)</p></li>
|
||||
<li><p><strong>error_metric</strong> – a string indicating the name of the error (as defined in <a class="reference internal" href="#module-quapy.error" title="quapy.error"><code class="xref py py-mod docutils literal notranslate"><span class="pre">quapy.error</span></code></a>) or a
|
||||
callable error function</p></li>
|
||||
<li><p><strong>verbose</strong> – set to True (default False) for displaying some information on standard output</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>yields one sample at a time</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.evaluation.artificial_prevalence_report">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">artificial_prevalence_report</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_prevpoints</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">210</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_repetitions</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eval_budget</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">42</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">error_metrics</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Iterable</span><span class="p"><span class="pre">[</span></span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'mae'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.artificial_prevalence_report" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">artificial_prevalence_report</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_prevpoints</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">101</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eval_budget</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">42</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">error_metrics</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Iterable</span><span class="p"><span class="pre">[</span></span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'mae'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.artificial_prevalence_report" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Generates an evaluation report for all samples generated according to the Artificial Prevalence Protocol (APP).
|
||||
The APP consists of exploring a grid of prevalence values containing <cite>n_prevalences</cite> points (e.g.,
|
||||
[0, 0.05, 0.1, 0.15, …, 1], if <cite>n_prevalences=21</cite>), and generating all valid combinations of
|
||||
prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], …,
|
||||
[1, 0, 0] prevalence values of size <cite>sample_size</cite> will be considered). The number of samples for each valid
|
||||
combination of prevalence values is indicated by <cite>repeats</cite>.
|
||||
Te report takes the form of a
|
||||
pandas’ <a class="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html">dataframe</a>
|
||||
in which the rows correspond to different samples, and the columns inform of the true prevalence values,
|
||||
the estimated prevalence values, and the score obtained by each of the evaluation measures indicated.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>model</strong> – the model in charge of generating the class prevalence estimations</p></li>
|
||||
<li><p><strong>test</strong> – the test set on which to perform APP</p></li>
|
||||
<li><p><strong>sample_size</strong> – integer, the size of the samples</p></li>
|
||||
<li><p><strong>n_prevpoints</strong> – integer, the number of different prevalences to sample (or set to None if eval_budget
|
||||
is specified; default 101, i.e., steps of 1%)</p></li>
|
||||
<li><p><strong>repeats</strong> – integer, the number of repetitions for each prevalence (default 1)</p></li>
|
||||
<li><p><strong>eval_budget</strong> – integer, if specified, sets a ceil on the number of evaluations to perform. For example, if
|
||||
there are 3 classes, <cite>repeats=1</cite>, and <cite>eval_budget=20</cite>, then <cite>n_prevpoints</cite> will be set to 5, since this
|
||||
will generate 15 different prevalence vectors ([0, 0, 1], [0, 0.25, 0.75], [0, 0.5, 0.5] … [1, 0, 0]) and
|
||||
since setting <cite>n_prevpoints=6</cite> would produce more than 20 evaluations.</p></li>
|
||||
<li><p><strong>n_jobs</strong> – integer, number of jobs to be run in parallel (default 1)</p></li>
|
||||
<li><p><strong>random_seed</strong> – integer, allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process (default 42)</p></li>
|
||||
<li><p><strong>error_metrics</strong> – a string indicating the name of the error (as defined in <a class="reference internal" href="#module-quapy.error" title="quapy.error"><code class="xref py py-mod docutils literal notranslate"><span class="pre">quapy.error</span></code></a>) or a
|
||||
callable error function; optionally, a list of strings or callables can be indicated, if the results
|
||||
are to be evaluated with more than one error metric. Default is “mae”</p></li>
|
||||
<li><p><strong>verbose</strong> – if True, shows a progress bar</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>pandas’ dataframe with rows corresponding to different samples, and with columns informing of the
|
||||
true prevalence values, the estimated prevalence values, and the score obtained by each of the evaluation
|
||||
measures indicated.</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.evaluation.evaluate">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">evaluate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_samples</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Iterable</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">err</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">-</span> <span class="pre">1</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.evaluate" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">evaluate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_samples</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Iterable</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">error_metric</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">-</span> <span class="pre">1</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.evaluate" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Evaluates a model on a sequence of test samples in terms of a given error metric.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>model</strong> – the model in charge of generating the class prevalence estimations</p></li>
|
||||
<li><p><strong>test_samples</strong> – an iterable yielding one sample at a time</p></li>
|
||||
<li><p><strong>error_metric</strong> – a string indicating the name of the error (as defined in <a class="reference internal" href="#module-quapy.error" title="quapy.error"><code class="xref py py-mod docutils literal notranslate"><span class="pre">quapy.error</span></code></a>) or a
|
||||
callable error function</p></li>
|
||||
<li><p><strong>n_jobs</strong> – integer, number of jobs to be run in parallel (default 1)</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>the score obtained using <cite>error_metric</cite></p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.evaluation.gen_prevalence_prediction">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">gen_prevalence_prediction</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">gen_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eval_budget</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.gen_prevalence_prediction" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Generates prevalence predictions for a custom protocol defined as a generator function that yields
|
||||
samples at each iteration. The sequence of samples is processed exhaustively if <cite>eval_budget=None</cite>
|
||||
or up to the <cite>eval_budget</cite> iterations if specified.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>model</strong> – the model in charge of generating the class prevalence estimations</p></li>
|
||||
<li><p><strong>gen_fn</strong> – a generator function yielding one sample at each iteration</p></li>
|
||||
<li><p><strong>eval_budget</strong> – a maximum number of evaluations to run. Set to None (default) for exploring the
|
||||
entire sequence</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>a tuple containing two <cite>np.ndarrays</cite> of shape <cite>(m,n,)</cite> with <cite>m</cite> the number of samples
|
||||
generated and <cite>n</cite> the number of classes. The first one contains the true prevalence values
|
||||
for the samples generated while the second one contains the prevalence estimations</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.evaluation.gen_prevalence_report">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">gen_prevalence_report</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">gen_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eval_budget</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">error_metrics</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Iterable</span><span class="p"><span class="pre">[</span></span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'mae'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.gen_prevalence_report" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>GGenerates an evaluation report for a custom protocol defined as a generator function that yields
|
||||
samples at each iteration. The sequence of samples is processed exhaustively if <cite>eval_budget=None</cite>
|
||||
or up to the <cite>eval_budget</cite> iterations if specified.
|
||||
Te report takes the form of a
|
||||
pandas’ <a class="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html">dataframe</a>
|
||||
in which the rows correspond to different samples, and the columns inform of the true prevalence values,
|
||||
the estimated prevalence values, and the score obtained by each of the evaluation measures indicated.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>model</strong> – the model in charge of generating the class prevalence estimations</p></li>
|
||||
<li><p><strong>gen_fn</strong> – a generator function yielding one sample at each iteration</p></li>
|
||||
<li><p><strong>eval_budget</strong> – a maximum number of evaluations to run. Set to None (default) for exploring the
|
||||
entire sequence</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>a tuple containing two <cite>np.ndarrays</cite> of shape <cite>(m,n,)</cite> with <cite>m</cite> the number of samples
|
||||
generated. The first one contains the true prevalence values
|
||||
for the samples generated while the second one contains the prevalence estimations</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.evaluation.natural_prevalence_prediction">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">natural_prevalence_prediction</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_repetitions</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">42</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.natural_prevalence_prediction" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Performs the predictions for all samples generated according to the artificial sampling protocol.
|
||||
:param model: the model in charge of generating the class prevalence estimations
|
||||
:param test: the test set on which to perform arificial sampling
|
||||
:param sample_size: the size of the samples
|
||||
:param n_repetitions: the number of repetitions for each prevalence
|
||||
:param n_jobs: number of jobs to be run in parallel
|
||||
:param random_seed: allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process.
|
||||
:param verbose: if True, shows a progress bar
|
||||
:return: two ndarrays of shape (m,n) with m the number of samples (n_repetitions) and n the</p>
|
||||
<blockquote>
|
||||
<div><p>number of classes. The first one contains the true prevalences for the samples generated while the second one
|
||||
contains the the prevalence estimations</p>
|
||||
</div></blockquote>
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">natural_prevalence_prediction</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">42</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.natural_prevalence_prediction" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Performs the predictions for all samples generated according to the Natural Prevalence Protocol (NPP).
|
||||
The NPP consists of drawing samples uniformly at random, therefore approximately preserving the natural
|
||||
prevalence of the collection.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>model</strong> – the model in charge of generating the class prevalence estimations</p></li>
|
||||
<li><p><strong>test</strong> – the test set on which to perform NPP</p></li>
|
||||
<li><p><strong>sample_size</strong> – integer, the size of the samples</p></li>
|
||||
<li><p><strong>repeats</strong> – integer, the number of samples to generate</p></li>
|
||||
<li><p><strong>n_jobs</strong> – integer, number of jobs to be run in parallel (default 1)</p></li>
|
||||
<li><p><strong>random_seed</strong> – allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process (default 42)</p></li>
|
||||
<li><p><strong>verbose</strong> – if True, shows a progress bar</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>a tuple containing two <cite>np.ndarrays</cite> of shape <cite>(m,n,)</cite> with <cite>m</cite> the number of samples
|
||||
<cite>(repeats)</cite> and <cite>n</cite> the number of classes. The first one contains the true prevalence values
|
||||
for the samples generated while the second one contains the prevalence estimations</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.evaluation.natural_prevalence_protocol">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">natural_prevalence_protocol</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_repetitions</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">42</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">error_metric</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'mae'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.natural_prevalence_protocol" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">natural_prevalence_protocol</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">42</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">error_metric</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'mae'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.natural_prevalence_protocol" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Generates samples according to the Natural Prevalence Protocol (NPP).
|
||||
The NPP consists of drawing samples uniformly at random, therefore approximately preserving the natural
|
||||
prevalence of the collection.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>model</strong> – the model in charge of generating the class prevalence estimations</p></li>
|
||||
<li><p><strong>test</strong> – the test set on which to perform NPP</p></li>
|
||||
<li><p><strong>sample_size</strong> – integer, the size of the samples</p></li>
|
||||
<li><p><strong>repeats</strong> – integer, the number of samples to generate</p></li>
|
||||
<li><p><strong>n_jobs</strong> – integer, number of jobs to be run in parallel (default 1)</p></li>
|
||||
<li><p><strong>random_seed</strong> – allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process (default 42)</p></li>
|
||||
<li><p><strong>error_metric</strong> – a string indicating the name of the error (as defined in <a class="reference internal" href="#module-quapy.error" title="quapy.error"><code class="xref py py-mod docutils literal notranslate"><span class="pre">quapy.error</span></code></a>) or a
|
||||
callable error function</p></li>
|
||||
<li><p><strong>verbose</strong> – if True, shows a progress bar</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>yields one sample at a time</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.evaluation.natural_prevalence_report">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">natural_prevalence_report</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_repetitions</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">42</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">error_metrics</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Iterable</span><span class="p"><span class="pre">[</span></span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'mae'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.natural_prevalence_report" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.evaluation.</span></span><span class="sig-name descname"><span class="pre">natural_prevalence_report</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.method.html#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">test</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">42</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">error_metrics</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Iterable</span><span class="p"><span class="pre">[</span></span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'mae'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.evaluation.natural_prevalence_report" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Generates an evaluation report for all samples generated according to the Natural Prevalence Protocol (NPP).
|
||||
The NPP consists of drawing samples uniformly at random, therefore approximately preserving the natural
|
||||
prevalence of the collection.
|
||||
Te report takes the form of a
|
||||
pandas’ <a class="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html">dataframe</a>
|
||||
in which the rows correspond to different samples, and the columns inform of the true prevalence values,
|
||||
the estimated prevalence values, and the score obtained by each of the evaluation measures indicated.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>model</strong> – the model in charge of generating the class prevalence estimations</p></li>
|
||||
<li><p><strong>test</strong> – the test set on which to perform NPP</p></li>
|
||||
<li><p><strong>sample_size</strong> – integer, the size of the samples</p></li>
|
||||
<li><p><strong>repeats</strong> – integer, the number of samples to generate</p></li>
|
||||
<li><p><strong>n_jobs</strong> – integer, number of jobs to be run in parallel (default 1)</p></li>
|
||||
<li><p><strong>random_seed</strong> – allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process (default 42)</p></li>
|
||||
<li><p><strong>error_metrics</strong> – a string indicating the name of the error (as defined in <a class="reference internal" href="#module-quapy.error" title="quapy.error"><code class="xref py py-mod docutils literal notranslate"><span class="pre">quapy.error</span></code></a>) or a
|
||||
callable error function; optionally, a list of strings or callables can be indicated, if the results
|
||||
are to be evaluated with more than one error metric. Default is “mae”</p></li>
|
||||
<li><p><strong>verbose</strong> – if True, shows a progress bar</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>a tuple containing two <cite>np.ndarrays</cite> of shape <cite>(m,n,)</cite> with <cite>m</cite> the number of samples
|
||||
<cite>(repeats)</cite> and <cite>n</cite> the number of classes. The first one contains the true prevalence values
|
||||
for the samples generated while the second one contains the prevalence estimations</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
</section>
|
||||
<section id="module-quapy.functional">
|
||||
|
@ -597,12 +791,44 @@ contains the the prevalence estimations</p>
|
|||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.functional.HellingerDistance">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.functional.</span></span><span class="sig-name descname"><span class="pre">HellingerDistance</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">P</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Q</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.functional.HellingerDistance" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Computes the Hellingher Distance (HD) between (discretized) distributions <cite>P</cite> and <cite>Q</cite>.
|
||||
The HD for two discrete distributions of <cite>k</cite> bins is defined as:</p>
|
||||
<div class="math notranslate nohighlight">
|
||||
\[HD(P,Q) = \frac{ 1 }{ \sqrt{ 2 } } \sqrt{ \sum_{i=1}^k ( \sqrt{p_i} - \sqrt{q_i} )^2 }\]</div>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>P</strong> – real-valued array-like of shape <cite>(k,)</cite> representing a discrete distribution</p></li>
|
||||
<li><p><strong>Q</strong> – real-valued array-like of shape <cite>(k,)</cite> representing a discrete distribution</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>float</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.functional.adjusted_quantification">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.functional.</span></span><span class="sig-name descname"><span class="pre">adjusted_quantification</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">prevalence_estim</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tpr</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">fpr</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">clip</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.functional.adjusted_quantification" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Implements the adjustment of ACC and PACC for the binary case. The adjustment for a prevalence estimate of the
|
||||
positive class <cite>p</cite> comes down to computing:</p>
|
||||
<div class="math notranslate nohighlight">
|
||||
\[ACC(p) = \frac{ p - fpr }{ tpr - fpr }\]</div>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>prevalence_estim</strong> – float, the estimated value for the positive class</p></li>
|
||||
<li><p><strong>tpr</strong> – float, the true positive rate of the classifier</p></li>
|
||||
<li><p><strong>fpr</strong> – float, the false positive rate of the classifier</p></li>
|
||||
<li><p><strong>clip</strong> – set to True (default) to clip values that might exceed the range [0,1]</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>float, the adjusted count</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.functional.artificial_prevalence_sampling">
|
||||
|
@ -626,7 +852,7 @@ constrained dimension</p></li>
|
|||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>an ndarray of shape <cite>(n, dimensions)</cite> if <cite>return_constrained_dim=True</cite> or of shape <cite>(n, dimensions-1)</cite>
|
||||
<dd class="field-even"><p>a <cite>np.ndarray</cite> of shape <cite>(n, dimensions)</cite> if <cite>return_constrained_dim=True</cite> or of shape <cite>(n, dimensions-1)</cite>
|
||||
if <cite>return_constrained_dim=False</cite>, where <cite>n</cite> is the number of valid combinations found in the grid multiplied
|
||||
by <cite>repeat</cite></p>
|
||||
</dd>
|
||||
|
@ -636,30 +862,63 @@ by <cite>repeat</cite></p>
|
|||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.functional.get_nprevpoints_approximation">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.functional.</span></span><span class="sig-name descname"><span class="pre">get_nprevpoints_approximation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">combinations_budget</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_repeats</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">1</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.functional.get_nprevpoints_approximation" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Searches for the largest number of (equidistant) prevalence points to define for each of the n_classes classes so that
|
||||
the number of valid prevalences generated as combinations of prevalence points (points in a n_classes-dimensional
|
||||
simplex) do not exceed combinations_budget.
|
||||
:param n_classes: number of classes
|
||||
:param n_repeats: number of repetitions for each prevalence combination
|
||||
:param combinations_budget: maximum number of combinatios allowed
|
||||
:return: the largest number of prevalence points that generate less than combinations_budget valid prevalences</p>
|
||||
<dd><p>Searches for the largest number of (equidistant) prevalence points to define for each of the <cite>n_classes</cite> classes so
|
||||
that the number of valid prevalence values generated as combinations of prevalence points (points in a
|
||||
<cite>n_classes</cite>-dimensional simplex) do not exceed combinations_budget.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>combinations_budget</strong> – integer, maximum number of combinatios allowed</p></li>
|
||||
<li><p><strong>n_classes</strong> – integer, number of classes</p></li>
|
||||
<li><p><strong>n_repeats</strong> – integer, number of repetitions for each prevalence combination</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>the largest number of prevalence points that generate less than combinations_budget valid prevalences</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.functional.normalize_prevalence">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.functional.</span></span><span class="sig-name descname"><span class="pre">normalize_prevalence</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">prevalences</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.functional.normalize_prevalence" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Normalize a vector or matrix of prevalence values. The normalization consists of applying a L1 normalization in
|
||||
cases in which the prevalence values are not all-zeros, and to convert the prevalence values into <cite>1/n_classes</cite> in
|
||||
cases in which all values are zero.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><p><strong>prevalences</strong> – array-like of shape <cite>(n_classes,)</cite> or of shape <cite>(n_samples, n_classes,)</cite> with prevalence values</p>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>a normalized vector or matrix of prevalence values</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.functional.num_prevalence_combinations">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.functional.</span></span><span class="sig-name descname"><span class="pre">num_prevalence_combinations</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_prevpoints</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_repeats</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">1</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.functional.num_prevalence_combinations" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Computes the number of prevalence combinations in the n_classes-dimensional simplex if nprevpoints equally distant
|
||||
prevalences are generated and n_repeats repetitions are requested
|
||||
:param n_classes: number of classes
|
||||
:param n_prevpoints: number of prevalence points.
|
||||
:param n_repeats: number of repetitions for each prevalence combination
|
||||
:return: The number of possible combinations. For example, if n_classes=2, n_prevpoints=5, n_repeats=1, then the
|
||||
number of possible combinations are 5, i.e.: [0,1], [0.25,0.75], [0.50,0.50], [0.75,0.25], and [1.0,0.0]</p>
|
||||
<dd><p>Computes the number of valid prevalence combinations in the n_classes-dimensional simplex if <cite>n_prevpoints</cite> equally
|
||||
distant prevalence values are generated and <cite>n_repeats</cite> repetitions are requested.
|
||||
The computation comes down to calculating:</p>
|
||||
<div class="math notranslate nohighlight">
|
||||
\[\binom{N+C-1}{C-1} \times r\]</div>
|
||||
<p>where <cite>N</cite> is <cite>n_prevpoints-1</cite>, i.e., the number of probability mass blocks to allocate, <cite>C</cite> is the number of
|
||||
classes, and <cite>r</cite> is <cite>n_repeats</cite>. This solution comes from the
|
||||
<a class="reference external" href="https://brilliant.org/wiki/integer-equations-star-and-bars/">Stars and Bars</a> problem.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>n_classes</strong> – integer, number of classes</p></li>
|
||||
<li><p><strong>n_prevpoints</strong> – integer, number of prevalence points.</p></li>
|
||||
<li><p><strong>n_repeats</strong> – integer, number of repetitions for each prevalence combination</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>The number of possible combinations. For example, if n_classes=2, n_prevpoints=5, n_repeats=1, then the</p>
|
||||
</dd>
|
||||
</dl>
|
||||
<p>number of possible combinations are 5, i.e.: [0,1], [0.25,0.75], [0.50,0.50], [0.75,0.25], and [1.0,0.0]</p>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
|
@ -683,19 +942,33 @@ some classes have no examples.</p></li>
|
|||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.functional.prevalence_from_probabilities">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.functional.</span></span><span class="sig-name descname"><span class="pre">prevalence_from_probabilities</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">posteriors</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">binarize</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.functional.prevalence_from_probabilities" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Returns a vector of prevalence values from a matrix of posterior probabilities.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>posteriors</strong> – array-like of shape <cite>(n_instances, n_classes,)</cite> with posterior probabilities for each class</p></li>
|
||||
<li><p><strong>binarize</strong> – set to True (default is False) for computing the prevalence values on crisp decisions (i.e.,
|
||||
converting the vectors of posterior probabilities into class indices, by taking the argmax).</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>array of shape <cite>(n_classes,)</cite> containing the prevalence values</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.functional.prevalence_linspace">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.functional.</span></span><span class="sig-name descname"><span class="pre">prevalence_linspace</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_prevalences</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">21</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeat</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">smooth_limits_epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.01</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.functional.prevalence_linspace" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Produces a uniformly separated values of prevalence. By default, produces an array of 21 prevalence values, with
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.functional.</span></span><span class="sig-name descname"><span class="pre">prevalence_linspace</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_prevalences</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">21</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">smooth_limits_epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.01</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.functional.prevalence_linspace" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Produces an array of uniformly separated values of prevalence.
|
||||
By default, produces an array of 21 prevalence values, with
|
||||
step 0.05 and with the limits smoothed, i.e.:
|
||||
[0.01, 0.05, 0.10, 0.15, …, 0.90, 0.95, 0.99]</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>n_prevalences</strong> – the number of prevalence values to sample from the [0,1] interval (default 21)</p></li>
|
||||
<li><p><strong>repeat</strong> – number of times each prevalence is to be repeated (defaults to 1)</p></li>
|
||||
<li><p><strong>repeats</strong> – number of times each prevalence is to be repeated (defaults to 1)</p></li>
|
||||
<li><p><strong>smooth_limits_epsilon</strong> – the quantity to add and subtract to the limits 0 and 1</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
|
@ -708,17 +981,61 @@ step 0.05 and with the limits smoothed, i.e.:
|
|||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.functional.strprev">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.functional.</span></span><span class="sig-name descname"><span class="pre">strprev</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">prevalences</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">prec</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">3</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.functional.strprev" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Returns a string representation for a prevalence vector. E.g.,</p>
|
||||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">strprev</span><span class="p">([</span><span class="mi">1</span><span class="o">/</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="o">/</span><span class="mi">3</span><span class="p">],</span> <span class="n">prec</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
|
||||
<span class="gp">>>> </span><span class="s1">'[0.33, 0.67]'</span>
|
||||
</pre></div>
|
||||
</div>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>prevalences</strong> – a vector of prevalence values</p></li>
|
||||
<li><p><strong>prec</strong> – float precision</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p>string</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.functional.uniform_prevalence_sampling">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.functional.</span></span><span class="sig-name descname"><span class="pre">uniform_prevalence_sampling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.functional.uniform_prevalence_sampling" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Implements the <a class="reference external" href="http://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf">Kraemer algorithm</a>
|
||||
for sampling uniformly at random from the unit simplex. This implementation is adapted from this
|
||||
<cite>post <https://cs.stackexchange.com/questions/3227/uniform-sampling-from-a-simplex>_</cite>.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>n_classes</strong> – integer, number of classes (dimensionality of the simplex)</p></li>
|
||||
<li><p><strong>size</strong> – number of samples to return</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(size, n_classes,)</cite> if <cite>size>1</cite>, or of shape <cite>(n_classes,)</cite> otherwise</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.functional.uniform_simplex_sampling">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.functional.</span></span><span class="sig-name descname"><span class="pre">uniform_simplex_sampling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.functional.uniform_simplex_sampling" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Implements the <a class="reference external" href="http://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf">Kraemer algorithm</a>
|
||||
for sampling uniformly at random from the unit simplex. This implementation is adapted from this
|
||||
<cite>post <https://cs.stackexchange.com/questions/3227/uniform-sampling-from-a-simplex>_</cite>.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters</dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>n_classes</strong> – integer, number of classes (dimensionality of the simplex)</p></li>
|
||||
<li><p><strong>size</strong> – number of samples to return</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns</dt>
|
||||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(size, n_classes,)</cite> if <cite>size>1</cite>, or of shape <cite>(n_classes,)</cite> otherwise</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
</section>
|
||||
<section id="module-quapy.model_selection">
|
||||
|
@ -1147,7 +1464,7 @@ func is applied in two parallel processes to args[0:50] and to args[50:99]</p>
|
|||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.util.pickled_resource">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.util.</span></span><span class="sig-name descname"><span class="pre">pickled_resource</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">pickle_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">generation_func</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">callable</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.util.pickled_resource" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Allows for fast reuse of resources that are generated only once by calling generation_func(<a href="#id1"><span class="problematic" id="id2">*</span></a>args). The next times
|
||||
<dd><p>Allows for fast reuse of resources that are generated only once by calling generation_func(<a href="#id4"><span class="problematic" id="id5">*</span></a>args). The next times
|
||||
this function is invoked, it loads the pickled resource. Example:</p>
|
||||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="k">def</span> <span class="nf">some_array</span><span class="p">(</span><span class="n">n</span><span class="p">):</span> <span class="c1"># a mock resource created with one parameter (`n`)</span>
|
||||
<span class="gp">>>> </span> <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
|
||||
|
|
File diff suppressed because one or more lines are too long
|
@ -214,11 +214,12 @@ class LabelledCollection:
|
|||
|
||||
def artificial_sampling_generator(self, sample_size, n_prevalences=101, repeats=1):
|
||||
"""
|
||||
A generator of samples that implements the artificial prevalence protocol (APP). The APP consists of exploring
|
||||
a grid of prevalence values (e.g., [0, 0.05, 0.1, 0.15, ..., 1]), and generating all valid combinations of
|
||||
A generator of samples that implements the artificial prevalence protocol (APP).
|
||||
The APP consists of exploring a grid of prevalence values containing `n_prevalences` points (e.g.,
|
||||
[0, 0.05, 0.1, 0.15, ..., 1], if `n_prevalences=21`), and generating all valid combinations of
|
||||
prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], ...,
|
||||
[1, 0, 0] prevalence values of size `sample_size` will be yielded). The number of samples for each valid
|
||||
combination of prevalence values is indicated by `repeats`
|
||||
combination of prevalence values is indicated by `repeats`.
|
||||
|
||||
:param sample_size: the number of instances in each sample
|
||||
:param n_prevalences: the number of prevalence points to be taken from the [0,1] interval (including the
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import Union, Callable, Iterable
|
||||
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
import inspect
|
||||
|
||||
import quapy as qp
|
||||
from quapy.data import LabelledCollection
|
||||
|
@ -9,44 +9,49 @@ from quapy.method.base import BaseQuantifier
|
|||
from quapy.util import temp_seed
|
||||
import quapy.functional as F
|
||||
import pandas as pd
|
||||
import inspect
|
||||
|
||||
|
||||
def artificial_prevalence_prediction(
|
||||
model: BaseQuantifier,
|
||||
test: LabelledCollection,
|
||||
sample_size,
|
||||
n_prevpoints=210,
|
||||
n_repetitions=1,
|
||||
n_prevpoints=101,
|
||||
repeats=1,
|
||||
eval_budget: int = None,
|
||||
n_jobs=1,
|
||||
random_seed=42,
|
||||
verbose=False):
|
||||
"""
|
||||
Performs the predictions for all samples generated according to the artificial sampling protocol.
|
||||
Performs the predictions for all samples generated according to the Artificial Prevalence Protocol (APP).
|
||||
The APP consists of exploring a grid of prevalence values containing `n_prevalences` points (e.g.,
|
||||
[0, 0.05, 0.1, 0.15, ..., 1], if `n_prevalences=21`), and generating all valid combinations of
|
||||
prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], ...,
|
||||
[1, 0, 0] prevalence values of size `sample_size` will be considered). The number of samples for each valid
|
||||
combination of prevalence values is indicated by `repeats`.
|
||||
|
||||
:param model: the model in charge of generating the class prevalence estimations
|
||||
:param test: the test set on which to perform arificial sampling
|
||||
:param sample_size: the size of the samples
|
||||
:param n_prevpoints: the number of different prevalences to sample (or set to None if eval_budget is specified)
|
||||
:param n_repetitions: the number of repetitions for each prevalence
|
||||
:param eval_budget: if specified, sets a ceil on the number of evaluations to perform. For example, if there are 3
|
||||
classes, n_repetitions=1 and eval_budget=20, then n_prevpoints will be set to 5, since this will generate 15
|
||||
different prevalences ([0, 0, 1], [0, 0.25, 0.75], [0, 0.5, 0.5] ... [1, 0, 0]) and since setting it n_prevpoints
|
||||
to 6 would produce more than 20 evaluations.
|
||||
:param n_jobs: number of jobs to be run in parallel
|
||||
:param random_seed: allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process.
|
||||
:param test: the test set on which to perform APP
|
||||
:param sample_size: integer, the size of the samples
|
||||
:param n_prevpoints: integer, the number of different prevalences to sample (or set to None if eval_budget
|
||||
is specified; default 101, i.e., steps of 1%)
|
||||
:param repeats: integer, the number of repetitions for each prevalence (default 1)
|
||||
:param eval_budget: integer, if specified, sets a ceil on the number of evaluations to perform. For example, if
|
||||
there are 3 classes, `repeats=1`, and `eval_budget=20`, then `n_prevpoints` will be set to 5, since this
|
||||
will generate 15 different prevalence vectors ([0, 0, 1], [0, 0.25, 0.75], [0, 0.5, 0.5] ... [1, 0, 0]) and
|
||||
since setting `n_prevpoints=6` would produce more than 20 evaluations.
|
||||
:param n_jobs: integer, number of jobs to be run in parallel (default 1)
|
||||
:param random_seed: integer, allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process (default 42)
|
||||
:param verbose: if True, shows a progress bar
|
||||
:return: two ndarrays of shape (m,n) with m the number of samples (n_prevpoints*n_repetitions) and n the
|
||||
number of classes. The first one contains the true prevalences for the samples generated while the second one
|
||||
contains the the prevalence estimations
|
||||
:return: a tuple containing two `np.ndarrays` of shape `(m,n,)` with `m` the number of samples
|
||||
`(n_prevpoints*repeats)` and `n` the number of classes. The first one contains the true prevalence values
|
||||
for the samples generated while the second one contains the prevalence estimations
|
||||
"""
|
||||
|
||||
n_prevpoints, _ = qp.evaluation._check_num_evals(test.n_classes, n_prevpoints, eval_budget, n_repetitions, verbose)
|
||||
n_prevpoints, _ = qp.evaluation._check_num_evals(test.n_classes, n_prevpoints, eval_budget, repeats, verbose)
|
||||
|
||||
with temp_seed(random_seed):
|
||||
indexes = list(test.artificial_sampling_index_generator(sample_size, n_prevpoints, n_repetitions))
|
||||
indexes = list(test.artificial_sampling_index_generator(sample_size, n_prevpoints, repeats))
|
||||
|
||||
return _predict_from_indexes(indexes, model, test, n_jobs, verbose)
|
||||
|
||||
|
@ -55,32 +60,48 @@ def natural_prevalence_prediction(
|
|||
model: BaseQuantifier,
|
||||
test: LabelledCollection,
|
||||
sample_size,
|
||||
n_repetitions=1,
|
||||
repeats,
|
||||
n_jobs=1,
|
||||
random_seed=42,
|
||||
verbose=False):
|
||||
"""
|
||||
Performs the predictions for all samples generated according to the artificial sampling protocol.
|
||||
Performs the predictions for all samples generated according to the Natural Prevalence Protocol (NPP).
|
||||
The NPP consists of drawing samples uniformly at random, therefore approximately preserving the natural
|
||||
prevalence of the collection.
|
||||
|
||||
:param model: the model in charge of generating the class prevalence estimations
|
||||
:param test: the test set on which to perform arificial sampling
|
||||
:param sample_size: the size of the samples
|
||||
:param n_repetitions: the number of repetitions for each prevalence
|
||||
:param n_jobs: number of jobs to be run in parallel
|
||||
:param test: the test set on which to perform NPP
|
||||
:param sample_size: integer, the size of the samples
|
||||
:param repeats: integer, the number of samples to generate
|
||||
:param n_jobs: integer, number of jobs to be run in parallel (default 1)
|
||||
:param random_seed: allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process.
|
||||
any other random process (default 42)
|
||||
:param verbose: if True, shows a progress bar
|
||||
:return: two ndarrays of shape (m,n) with m the number of samples (n_repetitions) and n the
|
||||
number of classes. The first one contains the true prevalences for the samples generated while the second one
|
||||
contains the the prevalence estimations
|
||||
:return: a tuple containing two `np.ndarrays` of shape `(m,n,)` with `m` the number of samples
|
||||
`(repeats)` and `n` the number of classes. The first one contains the true prevalence values
|
||||
for the samples generated while the second one contains the prevalence estimations
|
||||
"""
|
||||
|
||||
with temp_seed(random_seed):
|
||||
indexes = list(test.natural_sampling_index_generator(sample_size, n_repetitions))
|
||||
indexes = list(test.natural_sampling_index_generator(sample_size, repeats))
|
||||
|
||||
return _predict_from_indexes(indexes, model, test, n_jobs, verbose)
|
||||
|
||||
|
||||
def gen_prevalence_prediction(model: BaseQuantifier, gen_fn: Callable, eval_budget=None):
|
||||
"""
|
||||
Generates prevalence predictions for a custom protocol defined as a generator function that yields
|
||||
samples at each iteration. The sequence of samples is processed exhaustively if `eval_budget=None`
|
||||
or up to the `eval_budget` iterations if specified.
|
||||
|
||||
:param model: the model in charge of generating the class prevalence estimations
|
||||
:param gen_fn: a generator function yielding one sample at each iteration
|
||||
:param eval_budget: a maximum number of evaluations to run. Set to None (default) for exploring the
|
||||
entire sequence
|
||||
:return: a tuple containing two `np.ndarrays` of shape `(m,n,)` with `m` the number of samples
|
||||
generated and `n` the number of classes. The first one contains the true prevalence values
|
||||
for the samples generated while the second one contains the prevalence estimations
|
||||
"""
|
||||
if not inspect.isgenerator(gen_fn()):
|
||||
raise ValueError('param "gen_fun" is not a callable returning a generator')
|
||||
|
||||
|
@ -142,16 +163,49 @@ def artificial_prevalence_report(
|
|||
model: BaseQuantifier,
|
||||
test: LabelledCollection,
|
||||
sample_size,
|
||||
n_prevpoints=210,
|
||||
n_repetitions=1,
|
||||
n_prevpoints=101,
|
||||
repeats=1,
|
||||
eval_budget: int = None,
|
||||
n_jobs=1,
|
||||
random_seed=42,
|
||||
error_metrics:Iterable[Union[str,Callable]]='mae',
|
||||
verbose=False):
|
||||
"""
|
||||
Generates an evaluation report for all samples generated according to the Artificial Prevalence Protocol (APP).
|
||||
The APP consists of exploring a grid of prevalence values containing `n_prevalences` points (e.g.,
|
||||
[0, 0.05, 0.1, 0.15, ..., 1], if `n_prevalences=21`), and generating all valid combinations of
|
||||
prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], ...,
|
||||
[1, 0, 0] prevalence values of size `sample_size` will be considered). The number of samples for each valid
|
||||
combination of prevalence values is indicated by `repeats`.
|
||||
Te report takes the form of a
|
||||
pandas' `dataframe <https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html>`_
|
||||
in which the rows correspond to different samples, and the columns inform of the true prevalence values,
|
||||
the estimated prevalence values, and the score obtained by each of the evaluation measures indicated.
|
||||
|
||||
:param model: the model in charge of generating the class prevalence estimations
|
||||
:param test: the test set on which to perform APP
|
||||
:param sample_size: integer, the size of the samples
|
||||
:param n_prevpoints: integer, the number of different prevalences to sample (or set to None if eval_budget
|
||||
is specified; default 101, i.e., steps of 1%)
|
||||
:param repeats: integer, the number of repetitions for each prevalence (default 1)
|
||||
:param eval_budget: integer, if specified, sets a ceil on the number of evaluations to perform. For example, if
|
||||
there are 3 classes, `repeats=1`, and `eval_budget=20`, then `n_prevpoints` will be set to 5, since this
|
||||
will generate 15 different prevalence vectors ([0, 0, 1], [0, 0.25, 0.75], [0, 0.5, 0.5] ... [1, 0, 0]) and
|
||||
since setting `n_prevpoints=6` would produce more than 20 evaluations.
|
||||
:param n_jobs: integer, number of jobs to be run in parallel (default 1)
|
||||
:param random_seed: integer, allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process (default 42)
|
||||
:param error_metrics: a string indicating the name of the error (as defined in :mod:`quapy.error`) or a
|
||||
callable error function; optionally, a list of strings or callables can be indicated, if the results
|
||||
are to be evaluated with more than one error metric. Default is "mae"
|
||||
:param verbose: if True, shows a progress bar
|
||||
:return: pandas' dataframe with rows corresponding to different samples, and with columns informing of the
|
||||
true prevalence values, the estimated prevalence values, and the score obtained by each of the evaluation
|
||||
measures indicated.
|
||||
"""
|
||||
|
||||
true_prevs, estim_prevs = artificial_prevalence_prediction(
|
||||
model, test, sample_size, n_prevpoints, n_repetitions, eval_budget, n_jobs, random_seed, verbose
|
||||
model, test, sample_size, n_prevpoints, repeats, eval_budget, n_jobs, random_seed, verbose
|
||||
)
|
||||
return _prevalence_report(true_prevs, estim_prevs, error_metrics)
|
||||
|
||||
|
@ -160,18 +214,66 @@ def natural_prevalence_report(
|
|||
model: BaseQuantifier,
|
||||
test: LabelledCollection,
|
||||
sample_size,
|
||||
n_repetitions=1,
|
||||
repeats=1,
|
||||
n_jobs=1,
|
||||
random_seed=42,
|
||||
error_metrics:Iterable[Union[str,Callable]]='mae',
|
||||
verbose=False):
|
||||
"""
|
||||
Generates an evaluation report for all samples generated according to the Natural Prevalence Protocol (NPP).
|
||||
The NPP consists of drawing samples uniformly at random, therefore approximately preserving the natural
|
||||
prevalence of the collection.
|
||||
Te report takes the form of a
|
||||
pandas' `dataframe <https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html>`_
|
||||
in which the rows correspond to different samples, and the columns inform of the true prevalence values,
|
||||
the estimated prevalence values, and the score obtained by each of the evaluation measures indicated.
|
||||
|
||||
:param model: the model in charge of generating the class prevalence estimations
|
||||
:param test: the test set on which to perform NPP
|
||||
:param sample_size: integer, the size of the samples
|
||||
:param repeats: integer, the number of samples to generate
|
||||
:param n_jobs: integer, number of jobs to be run in parallel (default 1)
|
||||
:param random_seed: allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process (default 42)
|
||||
:param error_metrics: a string indicating the name of the error (as defined in :mod:`quapy.error`) or a
|
||||
callable error function; optionally, a list of strings or callables can be indicated, if the results
|
||||
are to be evaluated with more than one error metric. Default is "mae"
|
||||
:param verbose: if True, shows a progress bar
|
||||
:return: a tuple containing two `np.ndarrays` of shape `(m,n,)` with `m` the number of samples
|
||||
`(repeats)` and `n` the number of classes. The first one contains the true prevalence values
|
||||
for the samples generated while the second one contains the prevalence estimations
|
||||
|
||||
"""
|
||||
|
||||
true_prevs, estim_prevs = natural_prevalence_prediction(
|
||||
model, test, sample_size, n_repetitions, n_jobs, random_seed, verbose
|
||||
model, test, sample_size, repeats, n_jobs, random_seed, verbose
|
||||
)
|
||||
return _prevalence_report(true_prevs, estim_prevs, error_metrics)
|
||||
|
||||
|
||||
def gen_prevalence_report(model: BaseQuantifier, gen_fn: Callable, eval_budget=None,
|
||||
error_metrics:Iterable[Union[str,Callable]]='mae'):
|
||||
"""
|
||||
GGenerates an evaluation report for a custom protocol defined as a generator function that yields
|
||||
samples at each iteration. The sequence of samples is processed exhaustively if `eval_budget=None`
|
||||
or up to the `eval_budget` iterations if specified.
|
||||
Te report takes the form of a
|
||||
pandas' `dataframe <https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html>`_
|
||||
in which the rows correspond to different samples, and the columns inform of the true prevalence values,
|
||||
the estimated prevalence values, and the score obtained by each of the evaluation measures indicated.
|
||||
|
||||
:param model: the model in charge of generating the class prevalence estimations
|
||||
:param gen_fn: a generator function yielding one sample at each iteration
|
||||
:param eval_budget: a maximum number of evaluations to run. Set to None (default) for exploring the
|
||||
entire sequence
|
||||
:return: a tuple containing two `np.ndarrays` of shape `(m,n,)` with `m` the number of samples
|
||||
generated. The first one contains the true prevalence values
|
||||
for the samples generated while the second one contains the prevalence estimations
|
||||
"""
|
||||
true_prevs, estim_prevs = gen_prevalence_prediction(model, gen_fn, eval_budget)
|
||||
return _prevalence_report(true_prevs, estim_prevs, error_metrics)
|
||||
|
||||
|
||||
def _prevalence_report(
|
||||
true_prevs,
|
||||
estim_prevs,
|
||||
|
@ -199,13 +301,39 @@ def artificial_prevalence_protocol(
|
|||
model: BaseQuantifier,
|
||||
test: LabelledCollection,
|
||||
sample_size,
|
||||
n_prevpoints=210,
|
||||
n_repetitions=1,
|
||||
n_prevpoints=101,
|
||||
repeats=1,
|
||||
eval_budget: int = None,
|
||||
n_jobs=1,
|
||||
random_seed=42,
|
||||
error_metric:Union[str,Callable]='mae',
|
||||
verbose=False):
|
||||
"""
|
||||
Generates samples according to the Artificial Prevalence Protocol (APP).
|
||||
The APP consists of exploring a grid of prevalence values containing `n_prevalences` points (e.g.,
|
||||
[0, 0.05, 0.1, 0.15, ..., 1], if `n_prevalences=21`), and generating all valid combinations of
|
||||
prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], ...,
|
||||
[1, 0, 0] prevalence values of size `sample_size` will be considered). The number of samples for each valid
|
||||
combination of prevalence values is indicated by `repeats`.
|
||||
|
||||
:param model: the model in charge of generating the class prevalence estimations
|
||||
:param test: the test set on which to perform APP
|
||||
:param sample_size: integer, the size of the samples
|
||||
:param n_prevpoints: integer, the number of different prevalences to sample (or set to None if eval_budget
|
||||
is specified; default 101, i.e., steps of 1%)
|
||||
:param repeats: integer, the number of repetitions for each prevalence (default 1)
|
||||
:param eval_budget: integer, if specified, sets a ceil on the number of evaluations to perform. For example, if
|
||||
there are 3 classes, `repeats=1`, and `eval_budget=20`, then `n_prevpoints` will be set to 5, since this
|
||||
will generate 15 different prevalence vectors ([0, 0, 1], [0, 0.25, 0.75], [0, 0.5, 0.5] ... [1, 0, 0]) and
|
||||
since setting `n_prevpoints=6` would produce more than 20 evaluations.
|
||||
:param n_jobs: integer, number of jobs to be run in parallel (default 1)
|
||||
:param random_seed: integer, allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process (default 42)
|
||||
:param error_metric: a string indicating the name of the error (as defined in :mod:`quapy.error`) or a
|
||||
callable error function
|
||||
:param verbose: set to True (default False) for displaying some information on standard output
|
||||
:return: yields one sample at a time
|
||||
"""
|
||||
|
||||
if isinstance(error_metric, str):
|
||||
error_metric = qp.error.from_name(error_metric)
|
||||
|
@ -213,7 +341,7 @@ def artificial_prevalence_protocol(
|
|||
assert hasattr(error_metric, '__call__'), 'invalid error function'
|
||||
|
||||
true_prevs, estim_prevs = artificial_prevalence_prediction(
|
||||
model, test, sample_size, n_prevpoints, n_repetitions, eval_budget, n_jobs, random_seed, verbose
|
||||
model, test, sample_size, n_prevpoints, repeats, eval_budget, n_jobs, random_seed, verbose
|
||||
)
|
||||
|
||||
return error_metric(true_prevs, estim_prevs)
|
||||
|
@ -223,11 +351,28 @@ def natural_prevalence_protocol(
|
|||
model: BaseQuantifier,
|
||||
test: LabelledCollection,
|
||||
sample_size,
|
||||
n_repetitions=1,
|
||||
repeats=1,
|
||||
n_jobs=1,
|
||||
random_seed=42,
|
||||
error_metric:Union[str,Callable]='mae',
|
||||
verbose=False):
|
||||
"""
|
||||
Generates samples according to the Natural Prevalence Protocol (NPP).
|
||||
The NPP consists of drawing samples uniformly at random, therefore approximately preserving the natural
|
||||
prevalence of the collection.
|
||||
|
||||
:param model: the model in charge of generating the class prevalence estimations
|
||||
:param test: the test set on which to perform NPP
|
||||
:param sample_size: integer, the size of the samples
|
||||
:param repeats: integer, the number of samples to generate
|
||||
:param n_jobs: integer, number of jobs to be run in parallel (default 1)
|
||||
:param random_seed: allows to replicate the samplings. The seed is local to the method and does not affect
|
||||
any other random process (default 42)
|
||||
:param error_metric: a string indicating the name of the error (as defined in :mod:`quapy.error`) or a
|
||||
callable error function
|
||||
:param verbose: if True, shows a progress bar
|
||||
:return: yields one sample at a time
|
||||
"""
|
||||
|
||||
if isinstance(error_metric, str):
|
||||
error_metric = qp.error.from_name(error_metric)
|
||||
|
@ -235,16 +380,26 @@ def natural_prevalence_protocol(
|
|||
assert hasattr(error_metric, '__call__'), 'invalid error function'
|
||||
|
||||
true_prevs, estim_prevs = natural_prevalence_prediction(
|
||||
model, test, sample_size, n_repetitions, n_jobs, random_seed, verbose
|
||||
model, test, sample_size, repeats, n_jobs, random_seed, verbose
|
||||
)
|
||||
|
||||
return error_metric(true_prevs, estim_prevs)
|
||||
|
||||
|
||||
def evaluate(model: BaseQuantifier, test_samples:Iterable[LabelledCollection], err:Union[str, Callable], n_jobs:int=-1):
|
||||
if isinstance(err, str):
|
||||
err = qp.error.from_name(err)
|
||||
scores = qp.util.parallel(_delayed_eval, ((model, Ti, err) for Ti in test_samples), n_jobs=n_jobs)
|
||||
def evaluate(model: BaseQuantifier, test_samples:Iterable[LabelledCollection], error_metric:Union[str, Callable], n_jobs:int=-1):
|
||||
"""
|
||||
Evaluates a model on a sequence of test samples in terms of a given error metric.
|
||||
|
||||
:param model: the model in charge of generating the class prevalence estimations
|
||||
:param test_samples: an iterable yielding one sample at a time
|
||||
:param error_metric: a string indicating the name of the error (as defined in :mod:`quapy.error`) or a
|
||||
callable error function
|
||||
:param n_jobs: integer, number of jobs to be run in parallel (default 1)
|
||||
:return: the score obtained using `error_metric`
|
||||
"""
|
||||
if isinstance(error_metric, str):
|
||||
error_metric = qp.error.from_name(error_metric)
|
||||
scores = qp.util.parallel(_delayed_eval, ((model, Ti, error_metric) for Ti in test_samples), n_jobs=n_jobs)
|
||||
return np.mean(scores)
|
||||
|
||||
|
||||
|
@ -255,27 +410,27 @@ def _delayed_eval(args):
|
|||
return error(prev_true, prev_estim)
|
||||
|
||||
|
||||
def _check_num_evals(n_classes, n_prevpoints=None, eval_budget=None, n_repetitions=1, verbose=False):
|
||||
def _check_num_evals(n_classes, n_prevpoints=None, eval_budget=None, repeats=1, verbose=False):
|
||||
if n_prevpoints is None and eval_budget is None:
|
||||
raise ValueError('either n_prevpoints or eval_budget has to be specified')
|
||||
elif n_prevpoints is None:
|
||||
assert eval_budget > 0, 'eval_budget must be a positive integer'
|
||||
n_prevpoints = F.get_nprevpoints_approximation(eval_budget, n_classes, n_repetitions)
|
||||
eval_computations = F.num_prevalence_combinations(n_prevpoints, n_classes, n_repetitions)
|
||||
n_prevpoints = F.get_nprevpoints_approximation(eval_budget, n_classes, repeats)
|
||||
eval_computations = F.num_prevalence_combinations(n_prevpoints, n_classes, repeats)
|
||||
if verbose:
|
||||
print(f'setting n_prevpoints={n_prevpoints} so that the number of '
|
||||
f'evaluations ({eval_computations}) does not exceed the evaluation '
|
||||
f'budget ({eval_budget})')
|
||||
elif eval_budget is None:
|
||||
eval_computations = F.num_prevalence_combinations(n_prevpoints, n_classes, n_repetitions)
|
||||
eval_computations = F.num_prevalence_combinations(n_prevpoints, n_classes, repeats)
|
||||
if verbose:
|
||||
print(f'{eval_computations} evaluations will be performed for each '
|
||||
f'combination of hyper-parameters')
|
||||
else:
|
||||
eval_computations = F.num_prevalence_combinations(n_prevpoints, n_classes, n_repetitions)
|
||||
eval_computations = F.num_prevalence_combinations(n_prevpoints, n_classes, repeats)
|
||||
if eval_computations > eval_budget:
|
||||
n_prevpoints = F.get_nprevpoints_approximation(eval_budget, n_classes, n_repetitions)
|
||||
new_eval_computations = F.num_prevalence_combinations(n_prevpoints, n_classes, n_repetitions)
|
||||
n_prevpoints = F.get_nprevpoints_approximation(eval_budget, n_classes, repeats)
|
||||
new_eval_computations = F.num_prevalence_combinations(n_prevpoints, n_classes, repeats)
|
||||
if verbose:
|
||||
print(f'the budget of evaluations would be exceeded with '
|
||||
f'n_prevpoints={n_prevpoints}. Chaning to n_prevpoints={n_prevpoints}. This will produce '
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import itertools
|
||||
from collections import defaultdict
|
||||
|
||||
import scipy
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
@ -20,7 +20,7 @@ def artificial_prevalence_sampling(dimensions, n_prevalences=21, repeat=1, retur
|
|||
:param repeat: number of copies for each valid prevalence vector (default is 1)
|
||||
:param return_constrained_dim: set to True to return all dimensions, or to False (default) for ommitting the
|
||||
constrained dimension
|
||||
:return: an ndarray of shape `(n, dimensions)` if `return_constrained_dim=True` or of shape `(n, dimensions-1)`
|
||||
:return: a `np.ndarray` of shape `(n, dimensions)` if `return_constrained_dim=True` or of shape `(n, dimensions-1)`
|
||||
if `return_constrained_dim=False`, where `n` is the number of valid combinations found in the grid multiplied
|
||||
by `repeat`
|
||||
"""
|
||||
|
@ -35,14 +35,15 @@ def artificial_prevalence_sampling(dimensions, n_prevalences=21, repeat=1, retur
|
|||
return prevs
|
||||
|
||||
|
||||
def prevalence_linspace(n_prevalences=21, repeat=1, smooth_limits_epsilon=0.01):
|
||||
def prevalence_linspace(n_prevalences=21, repeats=1, smooth_limits_epsilon=0.01):
|
||||
"""
|
||||
Produces a uniformly separated values of prevalence. By default, produces an array of 21 prevalence values, with
|
||||
Produces an array of uniformly separated values of prevalence.
|
||||
By default, produces an array of 21 prevalence values, with
|
||||
step 0.05 and with the limits smoothed, i.e.:
|
||||
[0.01, 0.05, 0.10, 0.15, ..., 0.90, 0.95, 0.99]
|
||||
|
||||
:param n_prevalences: the number of prevalence values to sample from the [0,1] interval (default 21)
|
||||
:param repeat: number of times each prevalence is to be repeated (defaults to 1)
|
||||
:param repeats: number of times each prevalence is to be repeated (defaults to 1)
|
||||
:param smooth_limits_epsilon: the quantity to add and subtract to the limits 0 and 1
|
||||
:return: an array of uniformly separated prevalence values
|
||||
"""
|
||||
|
@ -51,8 +52,8 @@ def prevalence_linspace(n_prevalences=21, repeat=1, smooth_limits_epsilon=0.01):
|
|||
p[-1] -= smooth_limits_epsilon
|
||||
if p[0] > p[1]:
|
||||
raise ValueError(f'the smoothing in the limits is greater than the prevalence step')
|
||||
if repeat > 1:
|
||||
p = np.repeat(p, repeat)
|
||||
if repeats > 1:
|
||||
p = np.repeat(p, repeats)
|
||||
return p
|
||||
|
||||
|
||||
|
@ -75,6 +76,14 @@ def prevalence_from_labels(labels, classes):
|
|||
|
||||
|
||||
def prevalence_from_probabilities(posteriors, binarize: bool = False):
|
||||
"""
|
||||
Returns a vector of prevalence values from a matrix of posterior probabilities.
|
||||
|
||||
:param posteriors: array-like of shape `(n_instances, n_classes,)` with posterior probabilities for each class
|
||||
:param binarize: set to True (default is False) for computing the prevalence values on crisp decisions (i.e.,
|
||||
converting the vectors of posterior probabilities into class indices, by taking the argmax).
|
||||
:return: array of shape `(n_classes,)` containing the prevalence values
|
||||
"""
|
||||
if posteriors.ndim != 2:
|
||||
raise ValueError(f'param posteriors does not seem to be a ndarray of posteior probabilities')
|
||||
if binarize:
|
||||
|
@ -87,15 +96,34 @@ def prevalence_from_probabilities(posteriors, binarize: bool = False):
|
|||
|
||||
|
||||
def HellingerDistance(P, Q):
|
||||
"""
|
||||
Computes the Hellingher Distance (HD) between (discretized) distributions `P` and `Q`.
|
||||
The HD for two discrete distributions of `k` bins is defined as:
|
||||
|
||||
.. math::
|
||||
HD(P,Q) = \\frac{ 1 }{ \\sqrt{ 2 } } \\sqrt{ \sum_{i=1}^k ( \\sqrt{p_i} - \\sqrt{q_i} )^2 }
|
||||
|
||||
:param P: real-valued array-like of shape `(k,)` representing a discrete distribution
|
||||
:param Q: real-valued array-like of shape `(k,)` representing a discrete distribution
|
||||
:return: float
|
||||
"""
|
||||
return np.sqrt(np.sum((np.sqrt(P) - np.sqrt(Q))**2))
|
||||
|
||||
|
||||
def uniform_prevalence_sampling(n_classes, size=1):
|
||||
"""
|
||||
Implements the `Kraemer algorithm <http://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf>`_
|
||||
for sampling uniformly at random from the unit simplex. This implementation is adapted from this
|
||||
`post <https://cs.stackexchange.com/questions/3227/uniform-sampling-from-a-simplex>_`.
|
||||
|
||||
:param n_classes: integer, number of classes (dimensionality of the simplex)
|
||||
:param size: number of samples to return
|
||||
:return: `np.ndarray` of shape `(size, n_classes,)` if `size>1`, or of shape `(n_classes,)` otherwise
|
||||
"""
|
||||
if n_classes == 2:
|
||||
u = np.random.rand(size)
|
||||
u = np.vstack([1-u, u]).T
|
||||
else:
|
||||
# from https://cs.stackexchange.com/questions/3227/uniform-sampling-from-a-simplex
|
||||
u = np.random.rand(size, n_classes-1)
|
||||
u.sort(axis=-1)
|
||||
_0s = np.zeros(shape=(size, 1))
|
||||
|
@ -106,15 +134,41 @@ def uniform_prevalence_sampling(n_classes, size=1):
|
|||
if size == 1:
|
||||
u = u.flatten()
|
||||
return u
|
||||
#return np.asarray([uniform_simplex_sampling(n_classes) for _ in range(size)])
|
||||
|
||||
|
||||
uniform_simplex_sampling = uniform_prevalence_sampling
|
||||
|
||||
|
||||
def strprev(prevalences, prec=3):
|
||||
"""
|
||||
Returns a string representation for a prevalence vector. E.g.,
|
||||
|
||||
>>> strprev([1/3, 2/3], prec=2)
|
||||
>>> '[0.33, 0.67]'
|
||||
|
||||
:param prevalences: a vector of prevalence values
|
||||
:param prec: float precision
|
||||
:return: string
|
||||
"""
|
||||
return '['+ ', '.join([f'{p:.{prec}f}' for p in prevalences]) + ']'
|
||||
|
||||
|
||||
def adjusted_quantification(prevalence_estim, tpr, fpr, clip=True):
|
||||
"""
|
||||
Implements the adjustment of ACC and PACC for the binary case. The adjustment for a prevalence estimate of the
|
||||
positive class `p` comes down to computing:
|
||||
|
||||
.. math::
|
||||
ACC(p) = \\frac{ p - fpr }{ tpr - fpr }
|
||||
|
||||
|
||||
:param prevalence_estim: float, the estimated value for the positive class
|
||||
:param tpr: float, the true positive rate of the classifier
|
||||
:param fpr: float, the false positive rate of the classifier
|
||||
:param clip: set to True (default) to clip values that might exceed the range [0,1]
|
||||
:return: float, the adjusted count
|
||||
"""
|
||||
|
||||
den = tpr - fpr
|
||||
if den == 0:
|
||||
den += 1e-8
|
||||
|
@ -125,6 +179,14 @@ def adjusted_quantification(prevalence_estim, tpr, fpr, clip=True):
|
|||
|
||||
|
||||
def normalize_prevalence(prevalences):
|
||||
"""
|
||||
Normalize a vector or matrix of prevalence values. The normalization consists of applying a L1 normalization in
|
||||
cases in which the prevalence values are not all-zeros, and to convert the prevalence values into `1/n_classes` in
|
||||
cases in which all values are zero.
|
||||
|
||||
:param prevalences: array-like of shape `(n_classes,)` or of shape `(n_samples, n_classes,)` with prevalence values
|
||||
:return: a normalized vector or matrix of prevalence values
|
||||
"""
|
||||
prevalences = np.asarray(prevalences)
|
||||
n_classes = prevalences.shape[-1]
|
||||
accum = prevalences.sum(axis=-1, keepdims=True)
|
||||
|
@ -138,13 +200,14 @@ def normalize_prevalence(prevalences):
|
|||
return prevalences
|
||||
|
||||
|
||||
def num_prevalence_combinations(n_prevpoints:int, n_classes:int, n_repeats:int=1):
|
||||
def __num_prevalence_combinations_depr(n_prevpoints:int, n_classes:int, n_repeats:int=1):
|
||||
"""
|
||||
Computes the number of prevalence combinations in the n_classes-dimensional simplex if nprevpoints equally distant
|
||||
prevalences are generated and n_repeats repetitions are requested
|
||||
:param n_classes: number of classes
|
||||
:param n_prevpoints: number of prevalence points.
|
||||
:param n_repeats: number of repetitions for each prevalence combination
|
||||
Computes the number of prevalence combinations in the n_classes-dimensional simplex if `nprevpoints` equally distant
|
||||
prevalence values are generated and `n_repeats` repetitions are requested.
|
||||
|
||||
:param n_classes: integer, number of classes
|
||||
:param n_prevpoints: integer, number of prevalence points.
|
||||
:param n_repeats: integer, number of repetitions for each prevalence combination
|
||||
:return: The number of possible combinations. For example, if n_classes=2, n_prevpoints=5, n_repeats=1, then the
|
||||
number of possible combinations are 5, i.e.: [0,1], [0.25,0.75], [0.50,0.50], [0.75,0.25], and [1.0,0.0]
|
||||
"""
|
||||
|
@ -161,14 +224,40 @@ def num_prevalence_combinations(n_prevpoints:int, n_classes:int, n_repeats:int=1
|
|||
return __f(n_classes, n_prevpoints) * n_repeats
|
||||
|
||||
|
||||
def num_prevalence_combinations(n_prevpoints:int, n_classes:int, n_repeats:int=1):
|
||||
"""
|
||||
Computes the number of valid prevalence combinations in the n_classes-dimensional simplex if `n_prevpoints` equally
|
||||
distant prevalence values are generated and `n_repeats` repetitions are requested.
|
||||
The computation comes down to calculating:
|
||||
|
||||
.. math::
|
||||
\\binom{N+C-1}{C-1} \\times r
|
||||
|
||||
where `N` is `n_prevpoints-1`, i.e., the number of probability mass blocks to allocate, `C` is the number of
|
||||
classes, and `r` is `n_repeats`. This solution comes from the
|
||||
`Stars and Bars <https://brilliant.org/wiki/integer-equations-star-and-bars/>`_ problem.
|
||||
|
||||
:param n_classes: integer, number of classes
|
||||
:param n_prevpoints: integer, number of prevalence points.
|
||||
:param n_repeats: integer, number of repetitions for each prevalence combination
|
||||
:return: The number of possible combinations. For example, if n_classes=2, n_prevpoints=5, n_repeats=1, then the
|
||||
number of possible combinations are 5, i.e.: [0,1], [0.25,0.75], [0.50,0.50], [0.75,0.25], and [1.0,0.0]
|
||||
"""
|
||||
N = n_prevpoints-1
|
||||
C = n_classes
|
||||
r = n_repeats
|
||||
return int(scipy.special.binom(N + C - 1, C - 1) * r)
|
||||
|
||||
|
||||
def get_nprevpoints_approximation(combinations_budget:int, n_classes:int, n_repeats:int=1):
|
||||
"""
|
||||
Searches for the largest number of (equidistant) prevalence points to define for each of the n_classes classes so that
|
||||
the number of valid prevalences generated as combinations of prevalence points (points in a n_classes-dimensional
|
||||
simplex) do not exceed combinations_budget.
|
||||
:param n_classes: number of classes
|
||||
:param n_repeats: number of repetitions for each prevalence combination
|
||||
:param combinations_budget: maximum number of combinatios allowed
|
||||
Searches for the largest number of (equidistant) prevalence points to define for each of the `n_classes` classes so
|
||||
that the number of valid prevalence values generated as combinations of prevalence points (points in a
|
||||
`n_classes`-dimensional simplex) do not exceed combinations_budget.
|
||||
|
||||
:param combinations_budget: integer, maximum number of combinatios allowed
|
||||
:param n_classes: integer, number of classes
|
||||
:param n_repeats: integer, number of repetitions for each prevalence combination
|
||||
:return: the largest number of prevalence points that generate less than combinations_budget valid prevalences
|
||||
"""
|
||||
assert n_classes > 0 and n_repeats > 0 and combinations_budget > 0, 'parameters must be positive integers'
|
||||
|
|
|
@ -447,7 +447,7 @@ class HDy(AggregativeProbabilisticQuantifier, BinaryQuantifier):
|
|||
Px_test, _ = np.histogram(Px, bins=bins, range=(0, 1), density=True)
|
||||
|
||||
prev_selected, min_dist = None, None
|
||||
for prev in F.prevalence_linspace(n_prevalences=100, repeat=1, smooth_limits_epsilon=0.0):
|
||||
for prev in F.prevalence_linspace(n_prevalences=100, repeats=1, smooth_limits_epsilon=0.0):
|
||||
Px_train = prev * Pxy1_density + (1 - prev) * Pxy0_density
|
||||
hdy = F.HellingerDistance(Px_train, Px_test)
|
||||
if prev_selected is None or hdy < min_dist:
|
||||
|
|
Loading…
Reference in New Issue