Merge remote-tracking branch 'fork-origin/master' into devel
This commit is contained in:
commit
5e2fc07fc5
|
@ -1,108 +0,0 @@
|
|||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from os.path import join
|
||||
import quapy as qp
|
||||
from quapy.protocol import UPP
|
||||
from quapy.method.aggregative import KDEyML
|
||||
|
||||
DEBUG = True
|
||||
|
||||
qp.environ["SAMPLE_SIZE"] = 100 if DEBUG else 500
|
||||
val_repeats = 100 if DEBUG else 500
|
||||
test_repeats = 100 if DEBUG else 500
|
||||
if DEBUG:
|
||||
qp.environ["DEFAULT_CLS"] = LogisticRegression()
|
||||
|
||||
test_results = {}
|
||||
val_choice = {}
|
||||
|
||||
bandwidth_range = np.linspace(0.01, 0.20, 20)
|
||||
if DEBUG:
|
||||
bandwidth_range = np.linspace(0.01, 0.20, 10)
|
||||
|
||||
def datasets():
|
||||
for dataset_name in qp.datasets.UCI_MULTICLASS_DATASETS[:4]:
|
||||
dataset = qp.datasets.fetch_UCIMulticlassDataset(dataset_name)
|
||||
if DEBUG:
|
||||
dataset = dataset.reduce(random_state=0)
|
||||
yield dataset
|
||||
|
||||
|
||||
def experiment_dataset(dataset):
|
||||
train, test = dataset.train_test
|
||||
test_gen = UPP(test, repeats=test_repeats)
|
||||
|
||||
# bandwidth chosen during model selection in validation
|
||||
train_tr, train_va = train.split_stratified(random_state=0)
|
||||
kdey = KDEyML(random_state=0)
|
||||
modsel = qp.model_selection.GridSearchQ(
|
||||
model=kdey,
|
||||
param_grid={'bandwidth': bandwidth_range},
|
||||
protocol=UPP(train_va, repeats=val_repeats),
|
||||
refit=False,
|
||||
n_jobs=-1
|
||||
).fit(train_tr)
|
||||
chosen_bandwidth = modsel.best_params_['bandwidth']
|
||||
modsel_choice = float(chosen_bandwidth)
|
||||
|
||||
# results in test
|
||||
print(f"testing KDEy in {dataset.name}")
|
||||
dataset_results = []
|
||||
for b in bandwidth_range:
|
||||
kdey = KDEyML(bandwidth=b, random_state=0)
|
||||
kdey.fit(train)
|
||||
|
||||
mae = qp.evaluation.evaluate(kdey, protocol=test_gen, error_metric='mae', verbose=True)
|
||||
print(f'bandwidth={b}: {mae:.5f}')
|
||||
dataset_results.append((float(b), float(mae)))
|
||||
|
||||
return modsel_choice, dataset_results
|
||||
|
||||
def plot_bandwidth(val_choice, test_results):
|
||||
for dataset_name in val_choice.keys():
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
bandwidths, results = zip(*test_results[dataset_name])
|
||||
|
||||
# Crear la gráfica
|
||||
plt.figure(figsize=(8, 6))
|
||||
|
||||
# Graficar los puntos de datos
|
||||
plt.plot(bandwidths, results, marker='o')
|
||||
|
||||
# Agregar la línea vertical en bandwidth_chosen
|
||||
plt.axvline(x=val_choice[dataset_name], color='r', linestyle='--', label=f'Bandwidth elegido: {val_choice[dataset_name]}')
|
||||
|
||||
# Agregar etiquetas y título
|
||||
plt.xlabel('Bandwidth')
|
||||
plt.ylabel('Resultado')
|
||||
plt.title('Gráfica de Bandwidth vs Resultado')
|
||||
|
||||
# Mostrar la leyenda
|
||||
plt.legend()
|
||||
|
||||
# Mostrar la gráfica
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
|
||||
for dataset in datasets():
|
||||
if DEBUG:
|
||||
result_path = f'./results/debug/{dataset.name}.pkl'
|
||||
else:
|
||||
result_path = f'./results/{dataset.name}.pkl'
|
||||
|
||||
modsel_choice, dataset_results = qp.util.pickled_resource(result_path, experiment_dataset, dataset)
|
||||
val_choice[dataset.name] = modsel_choice
|
||||
test_results[dataset.name] = dataset_results
|
||||
|
||||
print(f'Dataset = {dataset.name}')
|
||||
print(modsel_choice)
|
||||
print(dataset_results)
|
||||
|
||||
plot_bandwidth(val_choice, test_results)
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue