merged
This commit is contained in:
commit
6388d9b549
|
|
@ -2,6 +2,7 @@
|
|||
Utility functions for `Bayesian quantification <https://arxiv.org/abs/2302.09159>`_ methods.
|
||||
"""
|
||||
import numpy as np
|
||||
import importlib.resources
|
||||
|
||||
try:
|
||||
import jax
|
||||
|
|
@ -82,6 +83,9 @@ def sample_posterior(
|
|||
|
||||
|
||||
|
||||
def load_stan_file():
|
||||
return importlib.resources.files('quapy.method').joinpath('stan/pq.stan').read_text(encoding='utf-8')
|
||||
|
||||
def pq_stan(stan_code, n_bins, pos_hist, neg_hist, test_hist, number_of_samples, num_warmup, stan_seed):
|
||||
"""
|
||||
Perform Bayesian prevalence estimation using a Stan model for probabilistic quantification.
|
||||
|
|
|
|||
|
|
@ -13,7 +13,6 @@ from abc import ABC, abstractmethod
|
|||
from scipy.special import softmax, factorial
|
||||
import copy
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
|
||||
"""
|
||||
This module provides implementation of different types of confidence regions, and the implementation of Bootstrap
|
||||
|
|
@ -625,10 +624,7 @@ class PQ(AggregativeSoftQuantifier, BinaryAggregativeQuantifier):
|
|||
self.num_samples = num_samples
|
||||
self.region = region
|
||||
self.stan_seed = stan_seed
|
||||
# with open('quapy/method/stan/pq.stan', 'r') as f:
|
||||
stan_path = Path(__file__).resolve().parent / "stan" / "pq.stan"
|
||||
with stan_path.open("r") as f:
|
||||
self.stan_code = str(f.read())
|
||||
self.stan_code = _bayesian.load_stan_file()
|
||||
|
||||
def aggregation_fit(self, classif_predictions, labels):
|
||||
y_pred = classif_predictions[:, self.pos_label]
|
||||
|
|
@ -662,7 +658,8 @@ class PQ(AggregativeSoftQuantifier, BinaryAggregativeQuantifier):
|
|||
return F.as_binary_prevalence(self.prev_distribution.mean())
|
||||
|
||||
def predict_conf(self, instances, confidence_level=None) -> (np.ndarray, ConfidenceRegionABC):
|
||||
point_estimate = self.predict(instances)
|
||||
classif_predictions = self.classify(instances)
|
||||
point_estimate = self.aggregate(classif_predictions)
|
||||
samples = self.prev_distribution
|
||||
region = WithConfidenceABC.construct_region(samples, confidence_level=confidence_level, method=self.region)
|
||||
return point_estimate, region
|
||||
|
|
|
|||
6
setup.py
6
setup.py
|
|
@ -111,6 +111,12 @@ setup(
|
|||
#
|
||||
packages=find_packages(include=['quapy', 'quapy.*']), # Required
|
||||
|
||||
package_data={
|
||||
# For the 'quapy.method' package, include all files
|
||||
# in the 'stan' subdirectory that end with .stan
|
||||
'quapy.method': ['stan/*.stan']
|
||||
},
|
||||
|
||||
python_requires='>=3.8, <4',
|
||||
|
||||
install_requires=['scikit-learn', 'pandas', 'tqdm', 'matplotlib', 'joblib', 'xlrd', 'abstention', 'ucimlrepo', 'certifi'],
|
||||
|
|
|
|||
Loading…
Reference in New Issue