This commit is contained in:
Alejandro Moreo Fernandez 2025-11-15 18:03:06 +01:00
commit 6388d9b549
3 changed files with 13 additions and 6 deletions

View File

@ -2,6 +2,7 @@
Utility functions for `Bayesian quantification <https://arxiv.org/abs/2302.09159>`_ methods.
"""
import numpy as np
import importlib.resources
try:
import jax
@ -82,6 +83,9 @@ def sample_posterior(
def load_stan_file():
return importlib.resources.files('quapy.method').joinpath('stan/pq.stan').read_text(encoding='utf-8')
def pq_stan(stan_code, n_bins, pos_hist, neg_hist, test_hist, number_of_samples, num_warmup, stan_seed):
"""
Perform Bayesian prevalence estimation using a Stan model for probabilistic quantification.

View File

@ -13,7 +13,6 @@ from abc import ABC, abstractmethod
from scipy.special import softmax, factorial
import copy
from functools import lru_cache
from pathlib import Path
"""
This module provides implementation of different types of confidence regions, and the implementation of Bootstrap
@ -625,10 +624,7 @@ class PQ(AggregativeSoftQuantifier, BinaryAggregativeQuantifier):
self.num_samples = num_samples
self.region = region
self.stan_seed = stan_seed
# with open('quapy/method/stan/pq.stan', 'r') as f:
stan_path = Path(__file__).resolve().parent / "stan" / "pq.stan"
with stan_path.open("r") as f:
self.stan_code = str(f.read())
self.stan_code = _bayesian.load_stan_file()
def aggregation_fit(self, classif_predictions, labels):
y_pred = classif_predictions[:, self.pos_label]
@ -662,7 +658,8 @@ class PQ(AggregativeSoftQuantifier, BinaryAggregativeQuantifier):
return F.as_binary_prevalence(self.prev_distribution.mean())
def predict_conf(self, instances, confidence_level=None) -> (np.ndarray, ConfidenceRegionABC):
point_estimate = self.predict(instances)
classif_predictions = self.classify(instances)
point_estimate = self.aggregate(classif_predictions)
samples = self.prev_distribution
region = WithConfidenceABC.construct_region(samples, confidence_level=confidence_level, method=self.region)
return point_estimate, region

View File

@ -111,6 +111,12 @@ setup(
#
packages=find_packages(include=['quapy', 'quapy.*']), # Required
package_data={
# For the 'quapy.method' package, include all files
# in the 'stan' subdirectory that end with .stan
'quapy.method': ['stan/*.stan']
},
python_requires='>=3.8, <4',
install_requires=['scikit-learn', 'pandas', 'tqdm', 'matplotlib', 'joblib', 'xlrd', 'abstention', 'ucimlrepo', 'certifi'],