dataset fetch for polarity reviews (hp, kindle, imdb) and twitter sentiment (11 datasets) added

This commit is contained in:
Alejandro Moreo Fernandez 2020-12-14 18:36:19 +01:00
parent c8a1a70c8a
commit 649d412389
5 changed files with 122 additions and 14 deletions

View File

@ -1,5 +1,6 @@
from .base import *
from .reader import *
from . import preprocessing
from . import datasets

83
quapy/data/datasets.py Normal file
View File

@ -0,0 +1,83 @@
import zipfile
from utils.util import download_file_if_not_exists, download_file, get_quapy_home
import os
from os.path import join
from data.base import Dataset, LabelledCollection
from data.reader import from_text, from_sparse
from data.preprocessing import text2tfidf, reduce_columns
REVIEWS_SENTIMENT_DATASETS = ['hp', 'kindle', 'imdb']
TWITTER_SENTIMENT_DATASETS = ['gasp', 'hcr', 'omd', 'sanders', 'semeval13', 'semeval14', 'semeval15', 'semeval16',
'sst', 'wa', 'wb']
def fetch_reviews(dataset_name, tfidf=False, min_df=None, data_home=None):
assert dataset_name in REVIEWS_SENTIMENT_DATASETS, \
f'Name {dataset_name} does not match any known dataset for sentiment reviews. ' \
f'Valid ones are {REVIEWS_SENTIMENT_DATASETS}'
if data_home is None:
data_home = get_quapy_home()
URL_TRAIN = f'https://zenodo.org/record/4117827/files/{dataset_name}_train.txt'
URL_TEST = f'https://zenodo.org/record/4117827/files/{dataset_name}_test.txt'
os.makedirs(join(data_home, 'reviews'), exist_ok=True)
train_path = join(data_home, 'reviews', dataset_name, 'train.txt')
test_path = join(data_home, 'reviews', dataset_name, 'test.txt')
download_file_if_not_exists(URL_TRAIN, train_path)
download_file_if_not_exists(URL_TEST, test_path)
data = Dataset.load(train_path, test_path, from_text)
if tfidf:
text2tfidf(data, inplace=True)
if min_df is not None:
reduce_columns(data, min_df=min_df, inplace=True)
return data
def fetch_twitter(dataset_name, model_selection=False, min_df=None, data_home=None):
assert dataset_name in TWITTER_SENTIMENT_DATASETS, \
f'Name {dataset_name} does not match any known dataset for sentiment twitter. ' \
f'Valid ones are {TWITTER_SENTIMENT_DATASETS}'
if data_home is None:
data_home = get_quapy_home()
URL = 'https://zenodo.org/record/4255764/files/tweet_sentiment_quantification_snam.zip'
unzipped_path = join(data_home, 'tweet_sentiment_quantification_snam')
if not os.path.exists(unzipped_path):
downloaded_path = join(data_home, 'tweet_sentiment_quantification_snam.zip')
download_file(URL, downloaded_path)
with zipfile.ZipFile(downloaded_path) as file:
file.extractall(data_home)
os.remove(downloaded_path)
if dataset_name in {'semeval13', 'semeval14', 'semeval15'}:
trainset_name = 'semeval'
testset_name = 'semeval' if model_selection else dataset_name
print(f"the training and development sets for datasets 'semeval13', 'semeval14', 'semeval15' are common "
f"(called 'semeval'); returning trainin-set='{trainset_name}' and test-set={testset_name}")
else:
trainset_name = testset_name = dataset_name
if model_selection:
train = join(unzipped_path, 'train', f'{trainset_name}.train.feature.txt')
test = join(unzipped_path, 'test', f'{testset_name}.dev.feature.txt')
else:
train = join(unzipped_path, 'train', f'{trainset_name}.train+dev.feature.txt')
if dataset_name == 'semeval16':
test = join(unzipped_path, 'test', f'{testset_name}.dev-test.feature.txt')
else:
test = join(unzipped_path, 'test', f'{testset_name}.test.feature.txt')
data = Dataset.load(train, test, from_sparse)
if min_df is not None:
reduce_columns(data, min_df=min_df, inplace=True)
return data

View File

@ -54,3 +54,4 @@ def from_sparse(path):
X = X.tocsr()
y = np.asarray(all_labels) + 1
return X, y

View File

@ -3,6 +3,10 @@ import multiprocessing
from joblib import Parallel, delayed
import contextlib
import numpy as np
import urllib
import os
from pathlib import Path
@ -33,3 +37,27 @@ def temp_seed(seed):
finally:
np.random.set_state(state)
def download_file(url, archive_filename):
def progress(blocknum, bs, size):
total_sz_mb = '%.2f MB' % (size / 1e6)
current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6)
print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb), end='')
print("Downloading %s" % url)
urllib.request.urlretrieve(url, filename=archive_filename, reporthook=progress)
print("")
def download_file_if_not_exists(url, archive_path):
if os.path.exists(archive_path):
return
create_if_not_exist(os.path.dirname(archive_path))
download_file(url,archive_path)
def create_if_not_exist(path):
os.makedirs(path, exist_ok=True)
def get_quapy_home():
return os.path.join(str(Path.home()), 'quapy_data')

23
test.py
View File

@ -2,28 +2,23 @@ from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
import quapy as qp
import quapy.functional as F
import sys
#qp.datasets.fetch_reviews('hp')
#qp.datasets.fetch_twitter('sst')
#sys.exit()
SAMPLE_SIZE=500
binary = False
svmperf_home = './svm_perf_quantification'
if binary:
# load a textual binary dataset and create a tfidf bag of words
train_path = './datasets/reviews/kindle/train.txt'
test_path = './datasets/reviews/kindle/test.txt'
dataset = qp.Dataset.load(train_path, test_path, qp.reader.from_text)
qp.preprocessing.text2tfidf(dataset, inplace=True)
qp.preprocessing.reduce_columns(dataset, min_df=10, inplace=True)
dataset = qp.datasets.fetch_reviews('kindle', tfidf=True, min_df=5)
else:
# load a sparse matrix ternary dataset
train_path = './datasets/twitter/train/sst.train+dev.feature.txt'
test_path = './datasets/twitter/test/sst.test.feature.txt'
dataset = qp.Dataset.load(train_path, test_path, qp.reader.from_sparse)
dataset = qp.datasets.fetch_twitter('semeval13', model_selection=False, min_df=10)
dataset.training = dataset.training.sampling(SAMPLE_SIZE, 0.2, 0.5, 0.3)
qp.preprocessing.reduce_columns(dataset, min_df=10, inplace=True)
print(dataset.training.instances.shape)
print('dataset loaded')
@ -63,8 +58,8 @@ print(f'mae={error:.3f}')
max_evaluations = 5000
n_prevpoints = F.get_nprevpoints_approximation(combinations_budget=max_evaluations, n_classes=dataset.n_classes)
n_evaluations = F.num_prevalence_combinations(n_prevpoints, dataset.n_classes)
print(f'the prevalence interval [0,1] will be split in {n_prevpoints} prevalence points for each class, so that '
f'the requested maximum number of sample evaluations ({max_evaluations}) is not exceeded. '
print(f'the prevalence interval [0,1] will be split in {n_prevpoints} prevalence points for each class, so that\n'
f'the requested maximum number of sample evaluations ({max_evaluations}) is not exceeded.\n'
f'For the {dataset.n_classes} classes this dataset has, this will yield a total of {n_evaluations} evaluations.')
true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(model, dataset.test, SAMPLE_SIZE, n_prevpoints)