small refactoring to reuse labelled collections and dataset classes instead of new dataclasses specific to it
This commit is contained in:
parent
2db7cf20bd
commit
6ca89d0e55
|
@ -20,30 +20,21 @@ Due to a low sample size and the fact that classes 2 and 3 are hard to distingui
|
||||||
it is hard to estimate the proportions accurately, what is visible by looking at the posterior samples,
|
it is hard to estimate the proportions accurately, what is visible by looking at the posterior samples,
|
||||||
showing large uncertainty.
|
showing large uncertainty.
|
||||||
"""
|
"""
|
||||||
from dataclasses import dataclass
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import quapy as qp
|
||||||
|
|
||||||
from sklearn.ensemble import RandomForestClassifier
|
from sklearn.ensemble import RandomForestClassifier
|
||||||
|
|
||||||
from quapy.method.aggregative import BayesianCC, ACC, PACC
|
from quapy.method.aggregative import BayesianCC, ACC, PACC
|
||||||
from quapy.data import LabelledCollection
|
from quapy.data import LabelledCollection, Dataset
|
||||||
|
|
||||||
|
|
||||||
FIGURE_PATH = "bayesian_quantification.pdf"
|
FIGURE_PATH = "bayesian_quantification.pdf"
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
def simulate_data(rng) -> Dataset:
|
||||||
class SimulatedData:
|
|
||||||
"""Auxiliary class to keep the training and test data sets."""
|
|
||||||
n_classes: int
|
|
||||||
X_train: np.ndarray
|
|
||||||
Y_train: np.ndarray
|
|
||||||
X_test: np.ndarray
|
|
||||||
Y_test: np.ndarray
|
|
||||||
|
|
||||||
|
|
||||||
def simulate_data(rng) -> SimulatedData:
|
|
||||||
"""Generates a simulated data set with three classes."""
|
"""Generates a simulated data set with three classes."""
|
||||||
|
|
||||||
# Number of examples of each class in both data sets
|
# Number of examples of each class in both data sets
|
||||||
|
@ -54,43 +45,32 @@ def simulate_data(rng) -> SimulatedData:
|
||||||
mus = [np.zeros(2), np.array([1, 1.5]), np.array([1.5, 1])]
|
mus = [np.zeros(2), np.array([1, 1.5]), np.array([1.5, 1])]
|
||||||
cov = np.eye(2)
|
cov = np.eye(2)
|
||||||
|
|
||||||
|
def gen_Xy(centers, sizes):
|
||||||
|
X = np.concatenate([rng.multivariate_normal(mu_i, cov, size_i) for mu_i, size_i in zip(centers, sizes)])
|
||||||
|
y = np.concatenate([[i] * n for i, n in enumerate(sizes)])
|
||||||
|
return X, y
|
||||||
|
|
||||||
# Generate the features accordingly
|
# Generate the features accordingly
|
||||||
X_train = np.concatenate([
|
train = LabelledCollection(*gen_Xy(centers=mus, sizes=n_train))
|
||||||
rng.multivariate_normal(mus[i], cov, size=n_train[i])
|
test = LabelledCollection(*gen_Xy(centers=mus, sizes=n_test))
|
||||||
for i in range(3)
|
|
||||||
])
|
|
||||||
|
|
||||||
X_test = np.concatenate([
|
return Dataset(training=train, test=test)
|
||||||
rng.multivariate_normal(mus[i], cov, size=n_test[i])
|
|
||||||
for i in range(3)
|
|
||||||
])
|
|
||||||
|
|
||||||
Y_train = np.concatenate([[i] * n for i, n in enumerate(n_train)])
|
|
||||||
Y_test = np.concatenate([[i] * n for i, n in enumerate(n_test)])
|
|
||||||
|
|
||||||
return SimulatedData(
|
|
||||||
n_classes=3,
|
|
||||||
X_train=X_train,
|
|
||||||
X_test=X_test,
|
|
||||||
Y_train=Y_train,
|
|
||||||
Y_test=Y_test,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def plot_simulated_data(axs, data: SimulatedData) -> None:
|
def plot_simulated_data(axs, data: Dataset) -> None:
|
||||||
"""Plots a simulated data set.
|
"""Plots a simulated data set.
|
||||||
|
|
||||||
Args:
|
:param axs: a list of three `plt.Axes` objects, on which the samples will be plotted.
|
||||||
axs: a list of three `plt.Axes` objects, on which the samples will be plotted.
|
:param data: the simulated data set.
|
||||||
data: the simulated data set.
|
|
||||||
"""
|
"""
|
||||||
|
train, test = data.train_test
|
||||||
xlim = (
|
xlim = (
|
||||||
-0.3 + min(data.X_train[:, 0].min(), data.X_test[:, 0].min()),
|
-0.3 + min(train.X[:, 0].min(), test.X[:, 0].min()),
|
||||||
0.3 + max(data.X_train[:, 0].max(), data.X_test[:, 0].max())
|
0.3 + max(train.X[:, 0].max(), test.X[:, 0].max())
|
||||||
)
|
)
|
||||||
ylim = (
|
ylim = (
|
||||||
-0.3 + min(data.X_train[:, 1].min(), data.X_test[:, 1].min()),
|
-0.3 + min(train.X[:, 1].min(), test.X[:, 1].min()),
|
||||||
0.3 + max(data.X_train[:, 1].max(), data.X_test[:, 1].max())
|
0.3 + max(train.X[:, 1].max(), test.X[:, 1].max())
|
||||||
)
|
)
|
||||||
|
|
||||||
for ax in axs:
|
for ax in axs:
|
||||||
|
@ -105,63 +85,23 @@ def plot_simulated_data(axs, data: SimulatedData) -> None:
|
||||||
ax = axs[0]
|
ax = axs[0]
|
||||||
ax.set_title("Training set")
|
ax.set_title("Training set")
|
||||||
for i in range(data.n_classes):
|
for i in range(data.n_classes):
|
||||||
ax.scatter(data.X_train[data.Y_train == i, 0], data.X_train[data.Y_train == i, 1], c=f"C{i}", s=3, rasterized=True)
|
ax.scatter(train.X[train.y == i, 0], train.X[train.y == i, 1], c=f"C{i}", s=3, rasterized=True)
|
||||||
|
|
||||||
ax = axs[1]
|
ax = axs[1]
|
||||||
ax.set_title("Test set\n(with labels)")
|
ax.set_title("Test set\n(with labels)")
|
||||||
for i in range(data.n_classes):
|
for i in range(data.n_classes):
|
||||||
ax.scatter(data.X_test[data.Y_test == i, 0], data.X_test[data.Y_test == i, 1], c=f"C{i}", s=3, rasterized=True)
|
ax.scatter(test.X[test.y == i, 0], test.X[test.y == i, 1], c=f"C{i}", s=3, rasterized=True)
|
||||||
|
|
||||||
ax = axs[2]
|
ax = axs[2]
|
||||||
ax.set_title("Test set\n(as observed)")
|
ax.set_title("Test set\n(as observed)")
|
||||||
ax.scatter(data.X_test[:, 0], data.X_test[:, 1], c="C5", s=3, rasterized=True)
|
ax.scatter(test.X[:, 0], test.X[:, 1], c="C5", s=3, rasterized=True)
|
||||||
|
|
||||||
|
|
||||||
def get_random_forest() -> RandomForestClassifier:
|
def plot_true_proportions(ax: plt.Axes, test_prevalence: np.ndarray) -> None:
|
||||||
"""An auxiliary factory method to generate a random forest."""
|
|
||||||
return RandomForestClassifier(n_estimators=10, random_state=5)
|
|
||||||
|
|
||||||
|
|
||||||
def train_and_plot_bayesian_quantification(ax: plt.Axes, training: LabelledCollection, test: np.ndarray, n_classes: int) -> None:
|
|
||||||
"""Fits Bayesian quantification and plots posterior mean as well as individual samples"""
|
|
||||||
quantifier = BayesianCC(classifier=get_random_forest())
|
|
||||||
quantifier.fit(training)
|
|
||||||
|
|
||||||
# Obtain mean prediction
|
|
||||||
mean_prediction = quantifier.quantify(test)
|
|
||||||
x_ax = np.arange(n_classes)
|
|
||||||
ax.plot(x_ax, mean_prediction, c="salmon", linewidth=2, linestyle=":", label="Bayesian")
|
|
||||||
|
|
||||||
# Obtain individual samples
|
|
||||||
samples = quantifier.get_prevalence_samples()
|
|
||||||
for sample in samples[::5, :]:
|
|
||||||
ax.plot(x_ax, sample, c="salmon", alpha=0.1, linewidth=0.3, rasterized=True)
|
|
||||||
|
|
||||||
|
|
||||||
def _get_estimate(estimator_class, training: LabelledCollection, test: np.ndarray) -> None:
|
|
||||||
"""Auxiliary method for running ACC and PACC."""
|
|
||||||
estimator = estimator_class(get_random_forest())
|
|
||||||
estimator.fit(training)
|
|
||||||
return estimator.quantify(test)
|
|
||||||
|
|
||||||
|
|
||||||
def train_and_plot_acc(ax: plt.Axes, training: LabelledCollection, test: np.ndarray, n_classes: int) -> None:
|
|
||||||
estimate = _get_estimate(ACC, training, test)
|
|
||||||
ax.plot(np.arange(n_classes), estimate, c="darkblue", linewidth=2, linestyle=":", label="ACC")
|
|
||||||
|
|
||||||
|
|
||||||
def train_and_plot_pacc(ax: plt.Axes, training: LabelledCollection, test: np.ndarray, n_classes: int) -> None:
|
|
||||||
estimate = _get_estimate(PACC, training, test)
|
|
||||||
ax.plot(np.arange(n_classes), estimate, c="limegreen", linewidth=2, linestyle=":", label="PACC")
|
|
||||||
|
|
||||||
|
|
||||||
def plot_true_proportions(ax: plt.Axes, test_labels: np.ndarray, n_classes: int) -> None:
|
|
||||||
"""Plots the true proportions."""
|
"""Plots the true proportions."""
|
||||||
counts = np.bincount(test_labels, minlength=n_classes)
|
n_classes = len(test_prevalence)
|
||||||
proportion = counts / counts.sum()
|
|
||||||
|
|
||||||
x_ax = np.arange(n_classes)
|
x_ax = np.arange(n_classes)
|
||||||
ax.plot(x_ax, proportion, c="black", linewidth=2, label="True")
|
ax.plot(x_ax, test_prevalence, c="black", linewidth=2, label="True")
|
||||||
|
|
||||||
ax.set_xlabel("Class")
|
ax.set_xlabel("Class")
|
||||||
ax.set_ylabel("Prevalence")
|
ax.set_ylabel("Prevalence")
|
||||||
|
@ -171,11 +111,59 @@ def plot_true_proportions(ax: plt.Axes, test_labels: np.ndarray, n_classes: int)
|
||||||
ax.set_ylim(-0.01, 1.01)
|
ax.set_ylim(-0.01, 1.01)
|
||||||
|
|
||||||
|
|
||||||
|
def get_random_forest() -> RandomForestClassifier:
|
||||||
|
"""An auxiliary factory method to generate a random forest."""
|
||||||
|
return RandomForestClassifier(n_estimators=10, random_state=5)
|
||||||
|
|
||||||
|
|
||||||
|
def _get_estimate(estimator_class, training: LabelledCollection, test: np.ndarray) -> None:
|
||||||
|
"""Auxiliary method for running ACC and PACC."""
|
||||||
|
estimator = estimator_class(get_random_forest())
|
||||||
|
estimator.fit(training)
|
||||||
|
return estimator.quantify(test)
|
||||||
|
|
||||||
|
|
||||||
|
def train_and_plot_bayesian_quantification(ax: plt.Axes, training: LabelledCollection, test: LabelledCollection) -> None:
|
||||||
|
"""Fits Bayesian quantification and plots posterior mean as well as individual samples"""
|
||||||
|
print('training model Bayesian CC...', end='')
|
||||||
|
quantifier = BayesianCC(classifier=get_random_forest())
|
||||||
|
quantifier.fit(training)
|
||||||
|
|
||||||
|
# Obtain mean prediction
|
||||||
|
mean_prediction = quantifier.quantify(test.X)
|
||||||
|
mae = qp.error.mae(test.prevalence(), mean_prediction)
|
||||||
|
x_ax = np.arange(training.n_classes)
|
||||||
|
ax.plot(x_ax, mean_prediction, c="salmon", linewidth=2, linestyle=":", label="Bayesian")
|
||||||
|
|
||||||
|
# Obtain individual samples
|
||||||
|
samples = quantifier.get_prevalence_samples()
|
||||||
|
for sample in samples[::5, :]:
|
||||||
|
ax.plot(x_ax, sample, c="salmon", alpha=0.1, linewidth=0.3, rasterized=True)
|
||||||
|
print(f'MAE={mae:.4f} [done]')
|
||||||
|
|
||||||
|
|
||||||
|
def train_and_plot_acc(ax: plt.Axes, training: LabelledCollection, test: LabelledCollection) -> None:
|
||||||
|
print('training model ACC...', end='')
|
||||||
|
estimate = _get_estimate(ACC, training, test.X)
|
||||||
|
mae = qp.error.mae(test.prevalence(), estimate)
|
||||||
|
ax.plot(np.arange(training.n_classes), estimate, c="darkblue", linewidth=2, linestyle=":", label="ACC")
|
||||||
|
print(f'MAE={mae:.4f} [done]')
|
||||||
|
|
||||||
|
|
||||||
|
def train_and_plot_pacc(ax: plt.Axes, training: LabelledCollection, test: LabelledCollection) -> None:
|
||||||
|
print('training model PACC...', end='')
|
||||||
|
estimate = _get_estimate(PACC, training, test.X)
|
||||||
|
mae = qp.error.mae(test.prevalence(), estimate)
|
||||||
|
ax.plot(np.arange(training.n_classes), estimate, c="limegreen", linewidth=2, linestyle=":", label="PACC")
|
||||||
|
print(f'MAE={mae:.4f} [done]')
|
||||||
|
|
||||||
|
|
||||||
def main() -> None:
|
def main() -> None:
|
||||||
# --- Simulate data ---
|
# --- Simulate data ---
|
||||||
|
print('generating simulated data')
|
||||||
rng = np.random.default_rng(42)
|
rng = np.random.default_rng(42)
|
||||||
data = simulate_data(rng)
|
data = simulate_data(rng)
|
||||||
|
training, test = data.train_test
|
||||||
|
|
||||||
# --- Plot simulated data ---
|
# --- Plot simulated data ---
|
||||||
fig, axs = plt.subplots(1, 4, figsize=(13, 3), dpi=300)
|
fig, axs = plt.subplots(1, 4, figsize=(13, 3), dpi=300)
|
||||||
|
@ -185,17 +173,19 @@ def main() -> None:
|
||||||
|
|
||||||
# --- Plot quantification results ---
|
# --- Plot quantification results ---
|
||||||
ax = axs[3]
|
ax = axs[3]
|
||||||
plot_true_proportions(ax, test_labels=data.Y_test, n_classes=data.n_classes)
|
plot_true_proportions(ax, test_prevalence=test.prevalence())
|
||||||
|
|
||||||
training = LabelledCollection(data.X_train, data.Y_train)
|
train_and_plot_acc(ax, training=training, test=test)
|
||||||
train_and_plot_acc(ax, training=training, test=data.X_test, n_classes=data.n_classes)
|
train_and_plot_pacc(ax, training=training, test=test)
|
||||||
train_and_plot_pacc(ax, training=training, test=data.X_test, n_classes=data.n_classes)
|
train_and_plot_bayesian_quantification(ax=ax, training=training, test=test)
|
||||||
train_and_plot_bayesian_quantification(ax=ax, training=training, test=data.X_test, n_classes=data.n_classes)
|
print('[done]')
|
||||||
|
|
||||||
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left', frameon=False)
|
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left', frameon=False)
|
||||||
|
|
||||||
|
print(f'saving plot in path {FIGURE_PATH}...', end='')
|
||||||
fig.tight_layout()
|
fig.tight_layout()
|
||||||
fig.savefig(FIGURE_PATH)
|
fig.savefig(FIGURE_PATH)
|
||||||
|
print('[done]')
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
Loading…
Reference in New Issue