diff --git a/quapy/method/confidence.py b/quapy/method/confidence.py index a630fe6..c997fb3 100644 --- a/quapy/method/confidence.py +++ b/quapy/method/confidence.py @@ -624,7 +624,7 @@ class PQ(AggregativeSoftQuantifier, BinaryAggregativeQuantifier): classifier: BaseEstimator=None, fit_classifier=True, val_split: int = 5, - n_bins: int = 4, + nbins: int = 4, fixed_bins: bool = False, num_warmup: int = 500, num_samples: int = 1_000, @@ -642,7 +642,7 @@ class PQ(AggregativeSoftQuantifier, BinaryAggregativeQuantifier): "Run `$ pip install quapy[bayes]` to install them.") super().__init__(classifier, fit_classifier, val_split) - self.n_bins = n_bins + self.nbins = nbins self.fixed_bins = fixed_bins self.num_warmup = num_warmup self.num_samples = num_samples @@ -657,10 +657,10 @@ class PQ(AggregativeSoftQuantifier, BinaryAggregativeQuantifier): # Compute bin limits if self.fixed_bins: # Uniform bins in [0,1] - self.bin_limits = np.linspace(0, 1, self.n_bins + 1) + self.bin_limits = np.linspace(0, 1, self.nbins + 1) else: # Quantile bins - self.bin_limits = np.quantile(y_pred, np.linspace(0, 1, self.n_bins + 1)) + self.bin_limits = np.quantile(y_pred, np.linspace(0, 1, self.nbins + 1)) # Assign each prediction to a bin bin_indices = np.digitize(y_pred, self.bin_limits[1:-1], right=True) @@ -670,14 +670,14 @@ class PQ(AggregativeSoftQuantifier, BinaryAggregativeQuantifier): neg_mask = ~pos_mask # Count positives and negatives per bin - self.pos_hist = np.bincount(bin_indices[pos_mask], minlength=self.n_bins) - self.neg_hist = np.bincount(bin_indices[neg_mask], minlength=self.n_bins) + self.pos_hist = np.bincount(bin_indices[pos_mask], minlength=self.nbins) + self.neg_hist = np.bincount(bin_indices[neg_mask], minlength=self.nbins) def aggregate(self, classif_predictions): Px_test = classif_predictions[:, self.pos_label] test_hist, _ = np.histogram(Px_test, bins=self.bin_limits) prevs = _bayesian.pq_stan( - self.stan_code, self.n_bins, self.pos_hist, self.neg_hist, test_hist, + self.stan_code, self.nbins, self.pos_hist, self.neg_hist, test_hist, self.num_samples, self.num_warmup, self.stan_seed ).flatten() self.prev_distribution = np.vstack([1-prevs, prevs]).T