Tests for non aggregative and meta methods.
This commit is contained in:
parent
8f284e540a
commit
70a3d4bd0f
|
@ -11,8 +11,8 @@ from torch.nn.utils.rnn import pad_sequence
|
|||
from tqdm import tqdm
|
||||
|
||||
import quapy as qp
|
||||
from data import LabelledCollection
|
||||
from util import EarlyStop
|
||||
from quapy.data import LabelledCollection
|
||||
from quapy.util import EarlyStop
|
||||
|
||||
|
||||
class NeuralClassifierTrainer:
|
||||
|
|
|
@ -3,21 +3,31 @@ from . import base
|
|||
from . import meta
|
||||
from . import non_aggregative
|
||||
|
||||
EXPLICIT_LOSS_MINIMIZATION_METHODS = {
|
||||
aggregative.ELM,
|
||||
aggregative.SVMQ,
|
||||
aggregative.SVMAE,
|
||||
aggregative.SVMKLD,
|
||||
aggregative.SVMRAE,
|
||||
aggregative.SVMNKLD
|
||||
}
|
||||
|
||||
AGGREGATIVE_METHODS = {
|
||||
aggregative.CC,
|
||||
aggregative.ACC,
|
||||
aggregative.PCC,
|
||||
aggregative.PACC,
|
||||
aggregative.ELM,
|
||||
aggregative.EMQ,
|
||||
aggregative.HDy
|
||||
}
|
||||
} | EXPLICIT_LOSS_MINIMIZATION_METHODS
|
||||
|
||||
|
||||
NON_AGGREGATIVE_METHODS = {
|
||||
non_aggregative.MaximumLikelihoodPrevalenceEstimation
|
||||
}
|
||||
|
||||
META_METHODS = {
|
||||
meta.Ensemble,
|
||||
meta.QuaNet
|
||||
}
|
||||
|
||||
|
|
|
@ -5,7 +5,8 @@ from sklearn.naive_bayes import MultinomialNB
|
|||
from sklearn.svm import LinearSVC
|
||||
|
||||
import quapy as qp
|
||||
from quapy.method import AGGREGATIVE_METHODS
|
||||
from quapy.method import AGGREGATIVE_METHODS, NON_AGGREGATIVE_METHODS, EXPLICIT_LOSS_MINIMIZATION_METHODS
|
||||
from quapy.method.meta import Ensemble
|
||||
|
||||
datasets = [pytest.param(qp.datasets.fetch_twitter('hcr'), id='hcr'),
|
||||
pytest.param(qp.datasets.fetch_UCIDataset('ionosphere'), id='ionosphere')]
|
||||
|
@ -14,12 +15,104 @@ learners = [LogisticRegression, MultinomialNB, LinearSVC]
|
|||
|
||||
|
||||
@pytest.mark.parametrize('dataset', datasets)
|
||||
@pytest.mark.parametrize('aggregative_method', AGGREGATIVE_METHODS)
|
||||
@pytest.mark.parametrize('aggregative_method', AGGREGATIVE_METHODS.difference(EXPLICIT_LOSS_MINIMIZATION_METHODS))
|
||||
@pytest.mark.parametrize('learner', learners)
|
||||
def test_aggregative_methods(dataset, aggregative_method, learner):
|
||||
model = aggregative_method(learner())
|
||||
|
||||
if model.binary and not dataset.binary:
|
||||
print(f'skipping the test of binary model {model} on non-binary dataset {dataset}')
|
||||
return
|
||||
|
||||
model.fit(dataset.training)
|
||||
|
||||
estim_prevalences = model.quantify(dataset.test.instances)
|
||||
|
||||
true_prevalences = dataset.test.prevalence()
|
||||
error = qp.error.mae(true_prevalences, estim_prevalences)
|
||||
|
||||
assert type(error) == numpy.float64
|
||||
|
||||
|
||||
@pytest.mark.parametrize('dataset', datasets)
|
||||
@pytest.mark.parametrize('elm_method', EXPLICIT_LOSS_MINIMIZATION_METHODS)
|
||||
def test_elm_methods(dataset, elm_method):
|
||||
try:
|
||||
model = elm_method()
|
||||
except AssertionError as ae:
|
||||
if ae.args[0].find('does not seem to point to a valid path') > 0:
|
||||
print('Missing SVMperf binary program, skipping test')
|
||||
return
|
||||
|
||||
if model.binary and not dataset.binary:
|
||||
print(f'skipping the test of binary model {model} on non-binary dataset {dataset}')
|
||||
return
|
||||
|
||||
model.fit(dataset.training)
|
||||
|
||||
estim_prevalences = model.quantify(dataset.test.instances)
|
||||
|
||||
true_prevalences = dataset.test.prevalence()
|
||||
error = qp.error.mae(true_prevalences, estim_prevalences)
|
||||
|
||||
assert type(error) == numpy.float64
|
||||
|
||||
|
||||
@pytest.mark.parametrize('dataset', datasets)
|
||||
@pytest.mark.parametrize('non_aggregative_method', NON_AGGREGATIVE_METHODS)
|
||||
def test_non_aggregative_methods(dataset, non_aggregative_method):
|
||||
model = non_aggregative_method()
|
||||
|
||||
if model.binary and not dataset.binary:
|
||||
print(f'skipping the test of binary model {model} on non-binary dataset {dataset}')
|
||||
return
|
||||
|
||||
model.fit(dataset.training)
|
||||
|
||||
estim_prevalences = model.quantify(dataset.test.instances)
|
||||
|
||||
true_prevalences = dataset.test.prevalence()
|
||||
error = qp.error.mae(true_prevalences, estim_prevalences)
|
||||
|
||||
assert type(error) == numpy.float64
|
||||
|
||||
|
||||
@pytest.mark.parametrize('base_method', AGGREGATIVE_METHODS.difference(EXPLICIT_LOSS_MINIMIZATION_METHODS))
|
||||
@pytest.mark.parametrize('learner', learners)
|
||||
@pytest.mark.parametrize('dataset', datasets)
|
||||
@pytest.mark.parametrize('policy', Ensemble.VALID_POLICIES)
|
||||
def test_ensemble_method(base_method, learner, dataset, policy):
|
||||
qp.environ['SAMPLE_SIZE'] = len(dataset.training)
|
||||
model = Ensemble(quantifier=base_method(learner()), size=5, policy=policy, n_jobs=-1)
|
||||
if model.binary and not dataset.binary:
|
||||
print(f'skipping the test of binary model {model} on non-binary dataset {dataset}')
|
||||
return
|
||||
|
||||
model.fit(dataset.training)
|
||||
|
||||
estim_prevalences = model.quantify(dataset.test.instances)
|
||||
|
||||
true_prevalences = dataset.test.prevalence()
|
||||
error = qp.error.mae(true_prevalences, estim_prevalences)
|
||||
|
||||
assert type(error) == numpy.float64
|
||||
|
||||
|
||||
def test_quanet_method():
|
||||
dataset = qp.datasets.fetch_reviews('kindle', pickle=True)
|
||||
qp.data.preprocessing.index(dataset, min_df=5, inplace=True)
|
||||
|
||||
from quapy.classification.neural import CNNnet
|
||||
cnn = CNNnet(dataset.vocabulary_size, dataset.n_classes)
|
||||
|
||||
from quapy.classification.neural import NeuralClassifierTrainer
|
||||
learner = NeuralClassifierTrainer(cnn, device='cuda')
|
||||
|
||||
from quapy.method.meta import QuaNet
|
||||
model = QuaNet(learner, sample_size=len(dataset.training), device='cuda')
|
||||
|
||||
if model.binary and not dataset.binary:
|
||||
print(f'skipping the test of binary model {model} on non-binary dataset {dataset}')
|
||||
return
|
||||
|
||||
model.fit(dataset.training)
|
||||
|
|
Loading…
Reference in New Issue