Tests for non aggregative and meta methods.

This commit is contained in:
Andrea Esuli 2021-05-04 12:14:14 +02:00
parent 8f284e540a
commit 70a3d4bd0f
3 changed files with 109 additions and 6 deletions

View File

@ -11,8 +11,8 @@ from torch.nn.utils.rnn import pad_sequence
from tqdm import tqdm
import quapy as qp
from data import LabelledCollection
from util import EarlyStop
from quapy.data import LabelledCollection
from quapy.util import EarlyStop
class NeuralClassifierTrainer:

View File

@ -3,21 +3,31 @@ from . import base
from . import meta
from . import non_aggregative
EXPLICIT_LOSS_MINIMIZATION_METHODS = {
aggregative.ELM,
aggregative.SVMQ,
aggregative.SVMAE,
aggregative.SVMKLD,
aggregative.SVMRAE,
aggregative.SVMNKLD
}
AGGREGATIVE_METHODS = {
aggregative.CC,
aggregative.ACC,
aggregative.PCC,
aggregative.PACC,
aggregative.ELM,
aggregative.EMQ,
aggregative.HDy
}
} | EXPLICIT_LOSS_MINIMIZATION_METHODS
NON_AGGREGATIVE_METHODS = {
non_aggregative.MaximumLikelihoodPrevalenceEstimation
}
META_METHODS = {
meta.Ensemble,
meta.QuaNet
}

View File

@ -5,7 +5,8 @@ from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import LinearSVC
import quapy as qp
from quapy.method import AGGREGATIVE_METHODS
from quapy.method import AGGREGATIVE_METHODS, NON_AGGREGATIVE_METHODS, EXPLICIT_LOSS_MINIMIZATION_METHODS
from quapy.method.meta import Ensemble
datasets = [pytest.param(qp.datasets.fetch_twitter('hcr'), id='hcr'),
pytest.param(qp.datasets.fetch_UCIDataset('ionosphere'), id='ionosphere')]
@ -14,12 +15,104 @@ learners = [LogisticRegression, MultinomialNB, LinearSVC]
@pytest.mark.parametrize('dataset', datasets)
@pytest.mark.parametrize('aggregative_method', AGGREGATIVE_METHODS)
@pytest.mark.parametrize('aggregative_method', AGGREGATIVE_METHODS.difference(EXPLICIT_LOSS_MINIMIZATION_METHODS))
@pytest.mark.parametrize('learner', learners)
def test_aggregative_methods(dataset, aggregative_method, learner):
model = aggregative_method(learner())
if model.binary and not dataset.binary:
print(f'skipping the test of binary model {model} on non-binary dataset {dataset}')
return
model.fit(dataset.training)
estim_prevalences = model.quantify(dataset.test.instances)
true_prevalences = dataset.test.prevalence()
error = qp.error.mae(true_prevalences, estim_prevalences)
assert type(error) == numpy.float64
@pytest.mark.parametrize('dataset', datasets)
@pytest.mark.parametrize('elm_method', EXPLICIT_LOSS_MINIMIZATION_METHODS)
def test_elm_methods(dataset, elm_method):
try:
model = elm_method()
except AssertionError as ae:
if ae.args[0].find('does not seem to point to a valid path') > 0:
print('Missing SVMperf binary program, skipping test')
return
if model.binary and not dataset.binary:
print(f'skipping the test of binary model {model} on non-binary dataset {dataset}')
return
model.fit(dataset.training)
estim_prevalences = model.quantify(dataset.test.instances)
true_prevalences = dataset.test.prevalence()
error = qp.error.mae(true_prevalences, estim_prevalences)
assert type(error) == numpy.float64
@pytest.mark.parametrize('dataset', datasets)
@pytest.mark.parametrize('non_aggregative_method', NON_AGGREGATIVE_METHODS)
def test_non_aggregative_methods(dataset, non_aggregative_method):
model = non_aggregative_method()
if model.binary and not dataset.binary:
print(f'skipping the test of binary model {model} on non-binary dataset {dataset}')
return
model.fit(dataset.training)
estim_prevalences = model.quantify(dataset.test.instances)
true_prevalences = dataset.test.prevalence()
error = qp.error.mae(true_prevalences, estim_prevalences)
assert type(error) == numpy.float64
@pytest.mark.parametrize('base_method', AGGREGATIVE_METHODS.difference(EXPLICIT_LOSS_MINIMIZATION_METHODS))
@pytest.mark.parametrize('learner', learners)
@pytest.mark.parametrize('dataset', datasets)
@pytest.mark.parametrize('policy', Ensemble.VALID_POLICIES)
def test_ensemble_method(base_method, learner, dataset, policy):
qp.environ['SAMPLE_SIZE'] = len(dataset.training)
model = Ensemble(quantifier=base_method(learner()), size=5, policy=policy, n_jobs=-1)
if model.binary and not dataset.binary:
print(f'skipping the test of binary model {model} on non-binary dataset {dataset}')
return
model.fit(dataset.training)
estim_prevalences = model.quantify(dataset.test.instances)
true_prevalences = dataset.test.prevalence()
error = qp.error.mae(true_prevalences, estim_prevalences)
assert type(error) == numpy.float64
def test_quanet_method():
dataset = qp.datasets.fetch_reviews('kindle', pickle=True)
qp.data.preprocessing.index(dataset, min_df=5, inplace=True)
from quapy.classification.neural import CNNnet
cnn = CNNnet(dataset.vocabulary_size, dataset.n_classes)
from quapy.classification.neural import NeuralClassifierTrainer
learner = NeuralClassifierTrainer(cnn, device='cuda')
from quapy.method.meta import QuaNet
model = QuaNet(learner, sample_size=len(dataset.training), device='cuda')
if model.binary and not dataset.binary:
print(f'skipping the test of binary model {model} on non-binary dataset {dataset}')
return
model.fit(dataset.training)