Omit large datasets (LeQua, IFCB) during CI to avoid overful memory of GitHub Actions runners
This commit is contained in:
parent
f3e543152c
commit
72b43bd2f8
|
@ -17,6 +17,8 @@ jobs:
|
|||
matrix:
|
||||
python-version:
|
||||
- "3.11"
|
||||
env:
|
||||
QUAPY_TESTS_OMIT_LARGE_DATASETS: True
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
import os
|
||||
import unittest
|
||||
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
|
@ -77,6 +78,9 @@ class TestDatasets(unittest.TestCase):
|
|||
self._check_dataset(dataset)
|
||||
|
||||
def test_lequa2022(self):
|
||||
if os.environ.get('QUAPY_TESTS_OMIT_LARGE_DATASETS'):
|
||||
print("omitting test_lequa2022 because QUAPY_TESTS_OMIT_LARGE_DATASETS is set")
|
||||
return
|
||||
|
||||
for dataset_name in LEQUA2022_VECTOR_TASKS:
|
||||
print(f'loading dataset {dataset_name}...', end='')
|
||||
|
@ -104,6 +108,10 @@ class TestDatasets(unittest.TestCase):
|
|||
|
||||
|
||||
def test_IFCB(self):
|
||||
if os.environ.get('QUAPY_TESTS_OMIT_LARGE_DATASETS'):
|
||||
print("omitting test_IFCB because QUAPY_TESTS_OMIT_LARGE_DATASETS is set")
|
||||
return
|
||||
|
||||
print(f'loading dataset IFCB.')
|
||||
for mod_sel in [False, True]:
|
||||
train, gen = fetch_IFCB(single_sample_train=True, for_model_selection=mod_sel)
|
||||
|
|
Loading…
Reference in New Issue