changing the logaritmic scale
This commit is contained in:
parent
f10a3139d9
commit
7ed7c9b2e9
|
@ -5,6 +5,7 @@ import numpy as np
|
|||
from matplotlib import cm
|
||||
from scipy.stats import ttest_ind_from_stats
|
||||
from matplotlib.ticker import ScalarFormatter
|
||||
import math
|
||||
|
||||
import quapy as qp
|
||||
|
||||
|
@ -272,9 +273,8 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs,
|
|||
if logscale:
|
||||
ax.set_yscale("log")
|
||||
ax.yaxis.set_major_formatter(ScalarFormatter())
|
||||
ax.yaxis.set_minor_formatter(ScalarFormatter())
|
||||
ax.yaxis.get_major_formatter().set_scientific(False)
|
||||
ax.yaxis.get_minor_formatter().set_scientific(False)
|
||||
ax.minorticks_off()
|
||||
|
||||
inds = np.digitize(tr_test_drifts, bins, right=True)
|
||||
|
||||
|
@ -307,12 +307,10 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs,
|
|||
if show_density:
|
||||
ax2 = ax.twinx()
|
||||
ax2.bar([ind * binwidth-binwidth/2 for ind in range(len(bins))],
|
||||
max_y*npoints/np.max(npoints), alpha=0.15, color='g', width=binwidth, label='density')
|
||||
#ax2.set_ylabel("bar data")
|
||||
npoints/np.sum(npoints), alpha=0.15, color='g', width=binwidth, label='density')
|
||||
ax2.set_ylim(0,1)
|
||||
ax2.spines['right'].set_color('g')
|
||||
ax2.tick_params(axis='y', colors='g')
|
||||
#ax2.yaxis.set_visible(False)
|
||||
|
||||
ax.set(xlabel=f'Distribution shift between training set and test sample',
|
||||
ylabel=f'{error_name.upper()} (true distribution, predicted distribution)',
|
||||
|
@ -325,9 +323,13 @@ def error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs,
|
|||
|
||||
|
||||
ax.set_xlim(min_x, max_x)
|
||||
if logscale:
|
||||
#nice scale for the logaritmic axis
|
||||
ax.set_ylim(0,10 ** math.ceil(math.log10(max_y)))
|
||||
|
||||
|
||||
if show_legend:
|
||||
fig.legend(loc='right')
|
||||
fig.legend(bbox_to_anchor=(1.05, 1), loc="upper right")
|
||||
|
||||
_save_or_show(savepath)
|
||||
|
||||
|
@ -549,7 +551,7 @@ def _join_data_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, x_error
|
|||
method_order = []
|
||||
|
||||
for method, test_prevs_i, estim_prevs_i, tr_prev_i in zip(method_names, true_prevs, estim_prevs, tr_prevs):
|
||||
tr_prev_i = np.repeat(tr_prev_i.reshape(1, -1), repeats=test_prevs_i.shape[0], axis=0)
|
||||
tr_prev_i = np.repeat(tr_prevs.reshape(1, -1), repeats=test_prevs_i.shape[0], axis=0)
|
||||
|
||||
tr_test_drifts = x_error(test_prevs_i, tr_prev_i)
|
||||
data[method]['x'] = np.concatenate([data[method]['x'], tr_test_drifts])
|
||||
|
|
Loading…
Reference in New Issue