adapting new format

This commit is contained in:
Alejandro Moreo Fernandez 2021-11-26 10:57:49 +01:00
parent 8e15678c36
commit 8368c467dc
5 changed files with 125 additions and 29 deletions

View File

@ -14,10 +14,10 @@ import constants
def baselines():
yield CC(LR(n_jobs=-1)), "CC"
yield ACC(LR(n_jobs=-1)), "ACC"
yield PCC(LR(n_jobs=-1)), "PCC"
yield PACC(LR(n_jobs=-1)), "PACC"
yield EMQ(CalibratedClassifierCV(LR(), n_jobs=-1)), "SLD"
# yield ACC(LR(n_jobs=-1)), "ACC"
# yield PCC(LR(n_jobs=-1)), "PCC"
# yield PACC(LR(n_jobs=-1)), "PACC"
# yield EMQ(CalibratedClassifierCV(LR(), n_jobs=-1)), "SLD"
# yield HDy(LR(n_jobs=-1)) if args.task == 'T1A' else OneVsAll(HDy(LR()), n_jobs=-1), "HDy"
# yield MLPE(), "MLPE"
@ -28,7 +28,7 @@ def main(args):
path_dev_vectors = os.path.join(args.datadir, 'dev_vectors')
path_dev_prevs = os.path.join(args.datadir, 'dev_prevalences.csv')
path_train = os.path.join(args.datadir, 'training_vectors.txt')
path_train = os.path.join(args.datadir, 'training_vectors.csv')
qp.environ['SAMPLE_SIZE'] = constants.SAMPLE_SIZE[args.task]
@ -46,13 +46,15 @@ def main(args):
# }
param_grid = {
'C': [1],
'C': [0.01],
'class_weight': ['balanced']
}
target_metric = qp.error.mrae
def gen_samples():
return gen_load_samples(path_dev_vectors, ground_truth_path=path_dev_prevs, return_id=False,
load_fn=load_vector_documents, nF=nF)
load_fn=load_vector_documents, ext='csv')
for quantifier, q_name in baselines():
print(f'{q_name}: Model selection')
@ -61,12 +63,12 @@ def main(args):
param_grid,
sample_size=None,
protocol='gen',
error=qp.error.mae,
error=target_metric, #qp.error.mae,
refit=False,
verbose=True
).fit(train, gen_samples)
print(f'{q_name} got MAE={quantifier.best_score_:.3f} (hyper-params: {quantifier.best_params_})')
print(f'{q_name} got MRAE={quantifier.best_score_:.5f} (hyper-params: {quantifier.best_params_})')
model_path = os.path.join(models_path, q_name+'.pkl')
print(f'saving model in {model_path}')
@ -91,8 +93,8 @@ if __name__ == '__main__':
raise ValueError(f'path {args.datadir} is not a valid directory')
if not os.path.exists(os.path.join(args.datadir, "dev_prevalences.csv")):
raise FileNotFoundError(f'path {args.datadir} does not contain "dev_prevalences.csv" file')
if not os.path.exists(os.path.join(args.datadir, "training_vectors.txt")):
raise FileNotFoundError(f'path {args.datadir} does not contain "training_vectors.txt" file')
if not os.path.exists(os.path.join(args.datadir, "training_vectors.csv")):
raise FileNotFoundError(f'path {args.datadir} does not contain "training_vectors.csv" file')
if not os.path.exists(os.path.join(args.datadir, "dev_vectors")):
raise FileNotFoundError(f'path {args.datadir} does not contain "dev_vectors" folder')

View File

@ -1,8 +1,14 @@
import argparse
import pickle
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression as LR
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from LeQua2022.pretrained_embeddings import TfidfWordEmbeddingTransformer, WordEmbeddingAverageTransformer
from LeQua2022.word_class_embeddings import WordClassEmbeddingsTransformer, ConcatenateEmbeddingsTransformer
from quapy.method.aggregative import *
from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE
import quapy.functional as F
@ -20,7 +26,7 @@ def baselines():
yield PCC(LR(n_jobs=-1)), "PCC"
yield PACC(LR(n_jobs=-1)), "PACC"
yield EMQ(CalibratedClassifierCV(LR(), n_jobs=-1)), "SLD"
yield HDy(LR(n_jobs=-1)) if args.task == 'T2A' else OneVsAll(HDy(LR()), n_jobs=-1), "HDy"
# yield HDy(LR(n_jobs=-1)) if args.task == 'T2A' else OneVsAll(HDy(LR()), n_jobs=-1), "HDy"
# yield MLPE(), "MLPE"
@ -35,9 +41,69 @@ def main(args):
qp.environ['SAMPLE_SIZE'] = constants.SAMPLE_SIZE[args.task]
train = LabelledCollection.load(path_train, load_raw_documents)
tfidf = TfidfVectorizer(lowercase=True, stop_words='english', min_df=4) # TfidfVectorizer(min_df=5)
train.instances = tfidf.fit_transform(train.instances)
nF = train.instances.shape[1]
if args.mode == 'tfidf1':
tfidf = TfidfVectorizer(min_df=5, sublinear_tf=True)
if args.mode == 'tfidf2':
tfidf = TfidfVectorizer(min_df=5, sublinear_tf=True, ngram_range=(1,2))
if args.mode == 'tfidf3':
tfidf = Pipeline([
('tfidf', TfidfVectorizer(min_df=5, sublinear_tf=True)),
('svd', TruncatedSVD(n_components=300))
])
if args.mode == 'tfidf4':
tfidf = Pipeline([
('tfidf', TfidfVectorizer(min_df=5, sublinear_tf=True, ngram_range=(1,2))),
('svd', TruncatedSVD(n_components=300))
])
if args.mode == 'glove1':
tfidf = Pipeline([
('glove-ave', WordEmbeddingAverageTransformer(wordset_name='glove', path='/mnt/1T/Datasets/GloVe')),
('zscore', StandardScaler())
])
if args.mode == 'glove2':
tfidf = WordEmbeddingAverageTransformer(wordset_name='glove', path='/mnt/1T/Datasets/GloVe')
if args.mode == 'glove3':
vect = TfidfVectorizer(min_df=5, sublinear_tf=True)
tfidf = Pipeline([
('tfidf', vect),
('embedding', TfidfWordEmbeddingTransformer(
wordset_name='glove',
features_call=vect.get_feature_names_out,
path='/mnt/1T/Datasets/GloVe')),
('zscore', StandardScaler())
])
if args.mode == 'glove4':
vect = TfidfVectorizer(min_df=5, sublinear_tf=True)
tfidf = Pipeline([
('tfidf', vect),
('embedding', TfidfWordEmbeddingTransformer(
wordset_name='glove',
features_call=vect.get_feature_names_out,
path='/mnt/1T/Datasets/GloVe'))
])
if args.mode == 'wce1':
tfidf = WordClassEmbeddingsTransformer()
if args.mode == 'wce2':
glove = Pipeline([
('glove-ave', WordEmbeddingAverageTransformer(wordset_name='glove', path='/mnt/1T/Datasets/GloVe')),
('zscore', StandardScaler())
])
wce = WordClassEmbeddingsTransformer()
tfidf = ConcatenateEmbeddingsTransformer([glove, wce])
if args.mode == 'wce3':
glove = Pipeline([
('glove-ave', WordEmbeddingAverageTransformer(wordset_name='glove', path='/mnt/1T/Datasets/GloVe')),
('zscore', StandardScaler())
])
wce = WordClassEmbeddingsTransformer()
tfidf = Pipeline([
('glove-wce', ConcatenateEmbeddingsTransformer([glove, wce])),
('svd', TruncatedSVD(n_components=300))
])
target_metric = qp.error.mrae
train.instances = tfidf.fit_transform(*train.Xy)
print(f'number of classes: {len(train.classes_)}')
print(f'number of training documents: {len(train)}')
@ -58,6 +124,7 @@ def main(args):
return gen_load_samples(path_dev_vectors, ground_truth_path=path_dev_prevs, return_id=False,
load_fn=load_raw_unlabelled_documents, vectorizer=tfidf)
outs = []
for quantifier, q_name in baselines():
print(f'{q_name}: Model selection')
quantifier = qp.model_selection.GridSearchQ(
@ -65,17 +132,25 @@ def main(args):
param_grid,
sample_size=None,
protocol='gen',
error=qp.error.mae,
error=target_metric, #qp.error.mae,
refit=False,
verbose=True
).fit(train, gen_samples)
print(f'{q_name} got MAE={quantifier.best_score_:.3f} (hyper-params: {quantifier.best_params_})')
print(f'{q_name} got MAE={quantifier.best_score_:.5f} (hyper-params: {quantifier.best_params_})')
outs.append(f'{q_name} got MAE={quantifier.best_score_:.5f} (hyper-params: {quantifier.best_params_})')
model_path = os.path.join(models_path, q_name+'.'+args.task+'.pkl')
print(f'saving model in {model_path}')
pickle.dump(quantifier.best_model(), open(model_path, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
print(tfidf)
print(args.mode)
print(outs)
with open(f'{args.mode}.{args.task}.txt', 'wt') as foo:
for line in outs:
foo.write(f'{line}\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='LeQua2022 Task T2A/T2B baselines')
@ -87,6 +162,8 @@ if __name__ == '__main__':
parser.add_argument('modeldir', metavar='MODEL-PATH', type=str,
help='Path where to save the models. '
'A subdirectory named <task> will be automatically created.')
parser.add_argument('mode', metavar='PREPROCESSMODE', type=str,
help='modality of preprocessing')
args = parser.parse_args()
if not os.path.exists(args.datadir):

View File

@ -34,33 +34,42 @@ def load_raw_unlabelled_documents(path, vectorizer=None):
return documents, None
def load_vector_documents(path, nF=None):
X, y = sklearn.datasets.load_svmlight_file(path, n_features=nF)
y = y.astype(int)
# def load_vector_documents(path, nF=None):
# X, y = sklearn.datasets.load_svmlight_file(path, n_features=nF, zero_based=True)
# y = y.astype(int)
# return X, y
def load_vector_documents(path):
D = pd.read_csv(path).to_numpy(dtype=np.float)
labelled = D.shape[1] == 301
if labelled:
X, y = D[:,:300], D[:,-1].astype(np.int).flatten()
else:
X, y = D, None
return X, y
def __gen_load_samples_with_groudtruth(path_dir:str, return_id:bool, ground_truth_path:str, load_fn, **load_kwargs):
def __gen_load_samples_with_groudtruth(path_dir:str, return_id:bool, ground_truth_path:str, ext:str, load_fn, **load_kwargs):
true_prevs = ResultSubmission.load(ground_truth_path)
for id, prevalence in true_prevs.iterrows():
sample, _ = load_fn(os.path.join(path_dir, f'{id}.txt'), **load_kwargs)
sample, _ = load_fn(os.path.join(path_dir, f'{id}.{ext}'), **load_kwargs)
yield (id, sample, prevalence) if return_id else (sample, prevalence)
def __gen_load_samples_without_groudtruth(path_dir:str, return_id:bool, load_fn, **load_kwargs):
nsamples = len(glob(os.path.join(path_dir, '*.txt')))
def __gen_load_samples_without_groudtruth(path_dir:str, return_id:bool, ext:str, load_fn, **load_kwargs):
nsamples = len(glob(os.path.join(path_dir, f'*.{ext}')))
for id in range(nsamples):
sample, _ = load_fn(os.path.join(path_dir, f'{id}.txt'), **load_kwargs)
sample, _ = load_fn(os.path.join(path_dir, f'{id}.{ext}'), **load_kwargs)
yield (id, sample) if return_id else sample
def gen_load_samples(path_dir:str, ground_truth_path:str = None, return_id=True, load_fn=load_vector_documents, **load_kwargs):
def gen_load_samples(path_dir:str, ground_truth_path:str = None, return_id=True, ext='txt', load_fn=load_vector_documents, **load_kwargs):
if ground_truth_path is None:
# the generator function returns tuples (docid:str, sample:csr_matrix or str)
gen_fn = __gen_load_samples_without_groudtruth(path_dir, return_id, load_fn, **load_kwargs)
gen_fn = __gen_load_samples_without_groudtruth(path_dir, return_id, ext, load_fn, **load_kwargs)
else:
# the generator function returns tuples (docid:str, sample:csr_matrix or str, prevalence:ndarray)
gen_fn = __gen_load_samples_with_groudtruth(path_dir, return_id, ground_truth_path, load_fn, **load_kwargs)
gen_fn = __gen_load_samples_with_groudtruth(path_dir, return_id, ground_truth_path, ext, load_fn, **load_kwargs)
for r in gen_fn:
yield r
@ -139,7 +148,11 @@ class ResultSubmission:
@classmethod
def check_file_format(cls, path) -> Union[pd.DataFrame, Tuple[pd.DataFrame, str]]:
df = pd.read_csv(path, index_col=0)
try:
df = pd.read_csv(path, index_col=0)
except Exception as e:
print(f'the file {path} does not seem to be a valid csv file. ')
print(e)
return ResultSubmission.check_dataframe_format(df, path=path)
@classmethod

View File

@ -24,6 +24,7 @@ def artificial_prevalence_prediction(
verbose=False):
"""
Performs the predictions for all samples generated according to the artificial sampling protocol.
:param model: the model in charge of generating the class prevalence estimations
:param test: the test set on which to perform arificial sampling
:param sample_size: the size of the samples

View File

@ -3,6 +3,8 @@ import signal
from copy import deepcopy
from typing import Union, Callable
import numpy as np
import quapy as qp
from quapy.data.base import LabelledCollection
from quapy.evaluation import artificial_prevalence_prediction, natural_prevalence_prediction, gen_prevalence_prediction
@ -190,6 +192,7 @@ class GridSearchQ(BaseQuantifier):
model.fit(training)
true_prevalences, estim_prevalences = self.__generate_predictions(model, val_split)
score = self.error(true_prevalences, estim_prevalences)
self._sout(f'checking hyperparams={params} got {self.error.__name__} score {score:.5f}')
if self.best_score_ is None or score < self.best_score_:
self.best_score_ = score