fixing bugs in one-vs-all
This commit is contained in:
parent
33a21db52c
commit
952cf5e767
|
@ -113,7 +113,7 @@
|
|||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.HDy.aggregate">(quapy.method.aggregative.HDy method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.OneVsAll.aggregate">(quapy.method.aggregative.OneVsAll method)</a>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.OneVsAllAggregative.aggregate">(quapy.method.aggregative.OneVsAllAggregative method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.PACC.aggregate">(quapy.method.aggregative.PACC method)</a>
|
||||
</li>
|
||||
|
@ -177,8 +177,6 @@
|
|||
<li><a href="quapy.method.html#quapy.method.aggregative.CC">CC (class in quapy.method.aggregative)</a>
|
||||
</li>
|
||||
<li><a href="quapy.html#quapy.functional.check_prevalence_vector">check_prevalence_vector() (in module quapy.functional)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.base.OneVsAllGeneric.classes">classes (quapy.method.base.OneVsAllGeneric property)</a>
|
||||
</li>
|
||||
<li><a href="quapy.classification.html#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.classes_">classes_ (quapy.classification.calibration.RecalibratedProbabilisticClassifierBase property)</a>
|
||||
|
||||
|
@ -187,7 +185,7 @@
|
|||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.AggregativeQuantifier.classes_">(quapy.method.aggregative.AggregativeQuantifier property)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.OneVsAll.classes_">(quapy.method.aggregative.OneVsAll property)</a>
|
||||
<li><a href="quapy.method.html#quapy.method.base.OneVsAllGeneric.classes_">(quapy.method.base.OneVsAllGeneric property)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.neural.QuaNetTrainer.classes_">(quapy.method.neural.QuaNetTrainer property)</a>
|
||||
</li>
|
||||
|
@ -203,7 +201,7 @@
|
|||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.ELM.classify">(quapy.method.aggregative.ELM method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.OneVsAll.classify">(quapy.method.aggregative.OneVsAll method)</a>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.OneVsAllAggregative.classify">(quapy.method.aggregative.OneVsAllAggregative method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.PACC.classify">(quapy.method.aggregative.PACC method)</a>
|
||||
</li>
|
||||
|
@ -358,8 +356,6 @@
|
|||
<li><a href="quapy.method.html#quapy.method.aggregative.EMQ.fit">(quapy.method.aggregative.EMQ method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.HDy.fit">(quapy.method.aggregative.HDy method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.OneVsAll.fit">(quapy.method.aggregative.OneVsAll method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.PACC.fit">(quapy.method.aggregative.PACC method)</a>
|
||||
</li>
|
||||
|
@ -426,10 +422,6 @@
|
|||
<li><a href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.get_params">(quapy.classification.neural.NeuralClassifierTrainer method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.classification.html#quapy.classification.neural.TextClassifierNet.get_params">(quapy.classification.neural.TextClassifierNet method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.OneVsAll.get_params">(quapy.method.aggregative.OneVsAll method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.base.OneVsAllGeneric.get_params">(quapy.method.base.OneVsAllGeneric method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.meta.Ensemble.get_params">(quapy.method.meta.Ensemble method)</a>
|
||||
</li>
|
||||
|
@ -443,6 +435,8 @@
|
|||
<li><a href="quapy.method.html#quapy.method.meta.get_probability_distribution">get_probability_distribution() (in module quapy.method.meta)</a>
|
||||
</li>
|
||||
<li><a href="quapy.html#quapy.util.get_quapy_home">get_quapy_home() (in module quapy.util)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.base.getOneVsAll">getOneVsAll() (in module quapy.method.base)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.ACC.getPteCondEstim">getPteCondEstim() (quapy.method.aggregative.ACC class method)</a>
|
||||
|
||||
|
@ -539,6 +533,8 @@
|
|||
<li><a href="quapy.method.html#quapy.method.aggregative.MedianSweep">MedianSweep (in module quapy.method.aggregative)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.MedianSweep2">MedianSweep2 (in module quapy.method.aggregative)</a>
|
||||
</li>
|
||||
<li><a href="quapy.data.html#quapy.data.base.LabelledCollection.mix">mix() (quapy.data.base.LabelledCollection class method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.html#quapy.error.mkld">mkld() (in module quapy.error)</a>
|
||||
</li>
|
||||
|
@ -641,10 +637,12 @@
|
|||
<td style="width: 33%; vertical-align: top;"><ul>
|
||||
<li><a href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol.on_preclassified_instances">on_preclassified_instances() (quapy.protocol.OnLabelledCollectionProtocol method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.OneVsAll">OneVsAll (class in quapy.method.aggregative)</a>
|
||||
<li><a href="quapy.method.html#quapy.method.base.OneVsAll">OneVsAll (class in quapy.method.base)</a>
|
||||
</li>
|
||||
</ul></td>
|
||||
<td style="width: 33%; vertical-align: top;"><ul>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.OneVsAllAggregative">OneVsAllAggregative (class in quapy.method.aggregative)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.base.OneVsAllGeneric">OneVsAllGeneric (class in quapy.method.base)</a>
|
||||
</li>
|
||||
<li><a href="quapy.html#quapy.protocol.OnLabelledCollectionProtocol">OnLabelledCollectionProtocol (class in quapy.protocol)</a>
|
||||
|
@ -975,10 +973,6 @@
|
|||
<li><a href="quapy.classification.html#quapy.classification.neural.NeuralClassifierTrainer.set_params">(quapy.classification.neural.NeuralClassifierTrainer method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.classification.html#quapy.classification.svmperf.SVMperf.set_params">(quapy.classification.svmperf.SVMperf method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.aggregative.OneVsAll.set_params">(quapy.method.aggregative.OneVsAll method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.base.OneVsAllGeneric.set_params">(quapy.method.base.OneVsAllGeneric method)</a>
|
||||
</li>
|
||||
<li><a href="quapy.method.html#quapy.method.meta.Ensemble.set_params">(quapy.method.meta.Ensemble method)</a>
|
||||
</li>
|
||||
|
|
Binary file not shown.
|
@ -168,7 +168,7 @@ training set afterwards. Default value is 5.</p></li>
|
|||
<span class="sig-name descname"><span class="pre">fit_cv</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.classification.calibration.RecalibratedProbabilisticClassifierBase.fit_cv" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Fits the calibration in a cross-validation manner, i.e., it generates posterior probabilities for all
|
||||
training instances via cross-validation, and then retrains the classifier on all training instances.
|
||||
The posterior probabilities thus generated are used for calibrating the outpus of the classifier.</p>
|
||||
The posterior probabilities thus generated are used for calibrating the outputs of the classifier.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
|
|
|
@ -222,10 +222,10 @@ the collection), <cite>prevs</cite> (the prevalence values for each class)</p>
|
|||
|
||||
<dl class="py class">
|
||||
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection">
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.base.</span></span><span class="sig-name descname"><span class="pre">LabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes_</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection" title="Permalink to this definition">¶</a></dt>
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.data.base.</span></span><span class="sig-name descname"><span class="pre">LabelledCollection</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
|
||||
<p>A LabelledCollection is a set of objects each with a label associated to it. This class implements many sampling
|
||||
routines.</p>
|
||||
<p>A LabelledCollection is a set of objects each with a label attached to each of them.
|
||||
This class implements several sampling routines and other utilities.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
|
@ -252,7 +252,7 @@ from the labels. The classes must be indicated in cases in which some of the lab
|
|||
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.Xp">
|
||||
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Xp</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.Xp" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Gets the instances and the true prevalence. This is useful when implementing evaluation protocols from
|
||||
a <cite>LabelledCollection</cite> object.</p>
|
||||
a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> object.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Returns<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><p>a tuple <cite>(instances, prevalence)</cite> from this collection</p>
|
||||
|
@ -299,7 +299,7 @@ as listed by <cite>self.classes_</cite></p>
|
|||
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.kFCV">
|
||||
<span class="sig-name descname"><span class="pre">kFCV</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">nfolds</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nrepeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.kFCV" title="Permalink to this definition">¶</a></dt>
|
||||
<span class="sig-name descname"><span class="pre">kFCV</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">nfolds</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nrepeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.kFCV" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Generator of stratified folds to be used in k-fold cross validation.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
||||
|
@ -338,6 +338,23 @@ these arguments are used to call <cite>loader_func(path, **loader_kwargs)</cite>
|
|||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.mix">
|
||||
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">mix</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">a</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">b</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.mix" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Returns a new <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> as the union of this collection with another collection.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>a</strong> – instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a></p></li>
|
||||
<li><p><strong>b</strong> – instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a></p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns<span class="colon">:</span></dt>
|
||||
<dd class="field-even"><p>a <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a> representing the union of both collections</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py property">
|
||||
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.n_classes">
|
||||
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">n_classes</span></span><a class="headerlink" href="#quapy.data.base.LabelledCollection.n_classes" title="Permalink to this definition">¶</a></dt>
|
||||
|
@ -374,7 +391,7 @@ as listed by <cite>self.classes_</cite></p>
|
|||
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.sampling">
|
||||
<span class="sig-name descname"><span class="pre">sampling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">prevs</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling" title="Permalink to this definition">¶</a></dt>
|
||||
<span class="sig-name descname"><span class="pre">sampling</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">prevs</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Return a random sample (an instance of <a class="reference internal" href="#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">LabelledCollection</span></code></a>) of desired size and desired prevalence
|
||||
values. For each class, the sampling is drawn without replacement if the requested prevalence is larger than
|
||||
the actual prevalence of the class, or with replacement otherwise.</p>
|
||||
|
@ -386,6 +403,7 @@ the actual prevalence of the class, or with replacement otherwise.</p>
|
|||
it is constrained. E.g., for binary collections, only the prevalence <cite>p</cite> for the first class (as listed in
|
||||
<cite>self.classes_</cite> can be specified, while the other class takes prevalence value <cite>1-p</cite></p></li>
|
||||
<li><p><strong>shuffle</strong> – if set to True (default), shuffles the index before returning it</p></li>
|
||||
<li><p><strong>random_state</strong> – seed for reproducing sampling</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns<span class="colon">:</span></dt>
|
||||
|
@ -412,7 +430,7 @@ index.</p>
|
|||
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.data.base.LabelledCollection.sampling_index">
|
||||
<span class="sig-name descname"><span class="pre">sampling_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">prevs</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling_index" title="Permalink to this definition">¶</a></dt>
|
||||
<span class="sig-name descname"><span class="pre">sampling_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">size</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">prevs</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shuffle</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.data.base.LabelledCollection.sampling_index" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Returns an index to be used to extract a random sample of desired size and desired prevalence values. If the
|
||||
prevalence values are not specified, then returns the index of a uniform sampling.
|
||||
For each class, the sampling is drawn without replacement if the requested prevalence is larger than
|
||||
|
@ -425,6 +443,7 @@ the actual prevalence of the class, or with replacement otherwise.</p>
|
|||
it is constrained. E.g., for binary collections, only the prevalence <cite>p</cite> for the first class (as listed in
|
||||
<cite>self.classes_</cite> can be specified, while the other class takes prevalence value <cite>1-p</cite></p></li>
|
||||
<li><p><strong>shuffle</strong> – if set to True (default), shuffles the index before returning it</p></li>
|
||||
<li><p><strong>random_state</strong> – seed for reproducing sampling</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns<span class="colon">:</span></dt>
|
||||
|
|
|
@ -502,7 +502,7 @@ will be taken from the environment variable <cite>SAMPLE_SIZE</cite> (which has
|
|||
</div>
|
||||
<span class="target" id="module-quapy.protocol"></span><dl class="py class">
|
||||
<dt class="sig sig-object py" id="quapy.protocol.APP">
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.protocol.</span></span><span class="sig-name descname"><span class="pre">APP</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_prevalences</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">21</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">smooth_limits_epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'sample_prev'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.protocol.APP" title="Permalink to this definition">¶</a></dt>
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.protocol.</span></span><span class="sig-name descname"><span class="pre">APP</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_prevalences</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">21</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">smooth_limits_epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'sample_prev'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.protocol.APP" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Bases: <a class="reference internal" href="#quapy.protocol.AbstractStochasticSeededProtocol" title="quapy.protocol.AbstractStochasticSeededProtocol"><code class="xref py py-class docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol</span></code></a>, <a class="reference internal" href="#quapy.protocol.OnLabelledCollectionProtocol" title="quapy.protocol.OnLabelledCollectionProtocol"><code class="xref py py-class docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol</span></code></a></p>
|
||||
<p>Implementation of the artificial prevalence protocol (APP).
|
||||
The APP consists of exploring a grid of prevalence values containing <cite>n_prevalences</cite> points (e.g.,
|
||||
|
@ -520,7 +520,8 @@ qp.environ[“SAMPLE_SIZE”]. If this is not set, a ValueError exception is rai
|
|||
grid (default is 21)</p></li>
|
||||
<li><p><strong>repeats</strong> – number of copies for each valid prevalence vector (default is 10)</p></li>
|
||||
<li><p><strong>smooth_limits_epsilon</strong> – the quantity to add and subtract to the limits 0 and 1</p></li>
|
||||
<li><p><strong>random_state</strong> – allows replicating samples across runs (default None)</p></li>
|
||||
<li><p><strong>random_state</strong> – allows replicating samples across runs (default 0, meaning that the sequence of samples
|
||||
will be the same every time the protocol is called)</p></li>
|
||||
<li><p><strong>return_type</strong> – set to “sample_prev” (default) to get the pairs of (sample, prevalence) at each iteration, or
|
||||
to “labelled_collection” to get instead instances of LabelledCollection</p></li>
|
||||
</ul>
|
||||
|
@ -604,7 +605,7 @@ in the grid multiplied by <cite>repeat</cite></p>
|
|||
|
||||
<dl class="py class">
|
||||
<dt class="sig sig-object py" id="quapy.protocol.AbstractStochasticSeededProtocol">
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.protocol.</span></span><span class="sig-name descname"><span class="pre">AbstractStochasticSeededProtocol</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.protocol.AbstractStochasticSeededProtocol" title="Permalink to this definition">¶</a></dt>
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.protocol.</span></span><span class="sig-name descname"><span class="pre">AbstractStochasticSeededProtocol</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.protocol.AbstractStochasticSeededProtocol" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Bases: <a class="reference internal" href="#quapy.protocol.AbstractProtocol" title="quapy.protocol.AbstractProtocol"><code class="xref py py-class docutils literal notranslate"><span class="pre">AbstractProtocol</span></code></a></p>
|
||||
<p>An <cite>AbstractStochasticSeededProtocol</cite> is a protocol that generates, via any random procedure (e.g.,
|
||||
via random sampling), sequences of <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> samples.
|
||||
|
@ -616,8 +617,8 @@ needed for extracting the samples, and <a class="reference internal" href="#quap
|
|||
deterministically generates a sample.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><p><strong>random_state</strong> – the seed for allowing to replicate any sequence of samples. Default is None, meaning that
|
||||
the sequence will be different every time the protocol is called.</p>
|
||||
<dd class="field-odd"><p><strong>random_state</strong> – the seed for allowing to replicate any sequence of samples. Default is 0, meaning that
|
||||
the sequence will be consistent every time the protocol is called.</p>
|
||||
</dd>
|
||||
</dl>
|
||||
<dl class="py method">
|
||||
|
@ -659,7 +660,7 @@ the sequence will be different every time the protocol is called.</p>
|
|||
|
||||
<dl class="py class">
|
||||
<dt class="sig sig-object py" id="quapy.protocol.DomainMixer">
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.protocol.</span></span><span class="sig-name descname"><span class="pre">DomainMixer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">domainA</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">domainB</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">prevalence</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mixture_points</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">11</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'sample_prev'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.protocol.DomainMixer" title="Permalink to this definition">¶</a></dt>
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.protocol.</span></span><span class="sig-name descname"><span class="pre">DomainMixer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">domainA</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">domainB</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">prevalence</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mixture_points</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">11</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'sample_prev'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.protocol.DomainMixer" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Bases: <a class="reference internal" href="#quapy.protocol.AbstractStochasticSeededProtocol" title="quapy.protocol.AbstractStochasticSeededProtocol"><code class="xref py py-class docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol</span></code></a></p>
|
||||
<p>Generates mixtures of two domains (A and B) at controlled rates, but preserving the original class prevalence.</p>
|
||||
<dl class="field-list simple">
|
||||
|
@ -675,7 +676,8 @@ will be taken from the domain A (default).</p></li>
|
|||
<li><p><strong>mixture_points</strong> – an integer indicating the number of points to take from a linear scale (e.g., 21 will
|
||||
generate the mixture points [1, 0.95, 0.9, …, 0]), or the array of mixture values itself.
|
||||
the specific points</p></li>
|
||||
<li><p><strong>random_state</strong> – </p></li>
|
||||
<li><p><strong>random_state</strong> – allows replicating samples across runs (default 0, meaning that the sequence of samples
|
||||
will be the same every time the protocol is called)</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
</dl>
|
||||
|
@ -719,7 +721,7 @@ the specific points</p></li>
|
|||
|
||||
<dl class="py class">
|
||||
<dt class="sig sig-object py" id="quapy.protocol.NPP">
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.protocol.</span></span><span class="sig-name descname"><span class="pre">NPP</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'sample_prev'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.protocol.NPP" title="Permalink to this definition">¶</a></dt>
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.protocol.</span></span><span class="sig-name descname"><span class="pre">NPP</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'sample_prev'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.protocol.NPP" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Bases: <a class="reference internal" href="#quapy.protocol.AbstractStochasticSeededProtocol" title="quapy.protocol.AbstractStochasticSeededProtocol"><code class="xref py py-class docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol</span></code></a>, <a class="reference internal" href="#quapy.protocol.OnLabelledCollectionProtocol" title="quapy.protocol.OnLabelledCollectionProtocol"><code class="xref py py-class docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol</span></code></a></p>
|
||||
<p>A generator of samples that implements the natural prevalence protocol (NPP). The NPP consists of drawing
|
||||
samples uniformly at random, therefore approximately preserving the natural prevalence of the collection.</p>
|
||||
|
@ -730,7 +732,8 @@ samples uniformly at random, therefore approximately preserving the natural prev
|
|||
<li><p><strong>sample_size</strong> – integer, the number of instances in each sample; if None (default) then it is taken from
|
||||
qp.environ[“SAMPLE_SIZE”]. If this is not set, a ValueError exception is raised.</p></li>
|
||||
<li><p><strong>repeats</strong> – the number of samples to generate. Default is 100.</p></li>
|
||||
<li><p><strong>random_state</strong> – allows replicating samples across runs (default None)</p></li>
|
||||
<li><p><strong>random_state</strong> – allows replicating samples across runs (default 0, meaning that the sequence of samples
|
||||
will be the same every time the protocol is called)</p></li>
|
||||
<li><p><strong>return_type</strong> – set to “sample_prev” (default) to get the pairs of (sample, prevalence) at each iteration, or
|
||||
to “labelled_collection” to get instead instances of LabelledCollection</p></li>
|
||||
</ul>
|
||||
|
@ -802,7 +805,7 @@ to “labelled_collection” to get instead instances of LabelledCollection</p><
|
|||
|
||||
<dl class="py class">
|
||||
<dt class="sig sig-object py" id="quapy.protocol.USimplexPP">
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.protocol.</span></span><span class="sig-name descname"><span class="pre">USimplexPP</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'sample_prev'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.protocol.USimplexPP" title="Permalink to this definition">¶</a></dt>
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.protocol.</span></span><span class="sig-name descname"><span class="pre">USimplexPP</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">repeats</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">random_state</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'sample_prev'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.protocol.USimplexPP" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Bases: <a class="reference internal" href="#quapy.protocol.AbstractStochasticSeededProtocol" title="quapy.protocol.AbstractStochasticSeededProtocol"><code class="xref py py-class docutils literal notranslate"><span class="pre">AbstractStochasticSeededProtocol</span></code></a>, <a class="reference internal" href="#quapy.protocol.OnLabelledCollectionProtocol" title="quapy.protocol.OnLabelledCollectionProtocol"><code class="xref py py-class docutils literal notranslate"><span class="pre">OnLabelledCollectionProtocol</span></code></a></p>
|
||||
<p>A variant of <a class="reference internal" href="#quapy.protocol.APP" title="quapy.protocol.APP"><code class="xref py py-class docutils literal notranslate"><span class="pre">APP</span></code></a> that, instead of using a grid of equidistant prevalence values,
|
||||
relies on the Kraemer algorithm for sampling unit (k-1)-simplex uniformly at random, with
|
||||
|
@ -817,7 +820,8 @@ combinations of the grid values of APP makes this endeavour intractable.</p>
|
|||
<li><p><strong>sample_size</strong> – integer, the number of instances in each sample; if None (default) then it is taken from
|
||||
qp.environ[“SAMPLE_SIZE”]. If this is not set, a ValueError exception is raised.</p></li>
|
||||
<li><p><strong>repeats</strong> – the number of samples to generate. Default is 100.</p></li>
|
||||
<li><p><strong>random_state</strong> – allows replicating samples across runs (default None)</p></li>
|
||||
<li><p><strong>random_state</strong> – allows replicating samples across runs (default 0, meaning that the sequence of samples
|
||||
will be the same every time the protocol is called)</p></li>
|
||||
<li><p><strong>return_type</strong> – set to “sample_prev” (default) to get the pairs of (sample, prevalence) at each iteration, or
|
||||
to “labelled_collection” to get instead instances of LabelledCollection</p></li>
|
||||
</ul>
|
||||
|
|
|
@ -781,9 +781,9 @@ validation data, or as an integer, indicating that the misclassification rates s
|
|||
</dd></dl>
|
||||
|
||||
<dl class="py class">
|
||||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll">
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">OneVsAll</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">binary_quantifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier" title="quapy.method.aggregative.AggregativeQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">AggregativeQuantifier</span></code></a></p>
|
||||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAllAggregative">
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">OneVsAllAggregative</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">binary_quantifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parallel_backend</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'loky'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAllAggregative" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.base.OneVsAllGeneric" title="quapy.method.base.OneVsAllGeneric"><code class="xref py py-class docutils literal notranslate"><span class="pre">OneVsAllGeneric</span></code></a>, <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier" title="quapy.method.aggregative.AggregativeQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">AggregativeQuantifier</span></code></a></p>
|
||||
<p>Allows any binary quantifier to perform quantification on single-label datasets.
|
||||
The method maintains one binary quantifier for each class, and then l1-normalizes the outputs so that the
|
||||
class prevelences sum up to 1.
|
||||
|
@ -795,12 +795,15 @@ This variant was used, along with the <a class="reference internal" href="#quapy
|
|||
<li><p><strong>binary_quantifier</strong> – a quantifier (binary) that will be employed to work on multiclass model in a
|
||||
one-vs-all manner</p></li>
|
||||
<li><p><strong>n_jobs</strong> – number of parallel workers</p></li>
|
||||
<li><p><strong>parallel_backend</strong> – the parallel backend for joblib (default “loky”); this is helpful for some quantifiers
|
||||
(e.g., ELM-based ones) that cannot be run with multiprocessing, since the temp dir they create during fit will
|
||||
is removed and no longer available at predict time.</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
</dl>
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.aggregate">
|
||||
<span class="sig-name descname"><span class="pre">aggregate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classif_predictions</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.aggregate" title="Permalink to this definition">¶</a></dt>
|
||||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAllAggregative.aggregate">
|
||||
<span class="sig-name descname"><span class="pre">aggregate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classif_predictions</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAllAggregative.aggregate" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Implements the aggregation of label predictions.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
||||
|
@ -812,21 +815,9 @@ one-vs-all manner</p></li>
|
|||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py property">
|
||||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.classes_">
|
||||
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.classes_" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Class labels, in the same order in which class prevalence values are to be computed.
|
||||
This default implementation actually returns the class labels of the learner.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Returns<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><p>array-like</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.classify">
|
||||
<span class="sig-name descname"><span class="pre">classify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.classify" title="Permalink to this definition">¶</a></dt>
|
||||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAllAggregative.classify">
|
||||
<span class="sig-name descname"><span class="pre">classify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAllAggregative.classify" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>If the base quantifier is not probabilistic, returns a matrix of shape <cite>(n,m,)</cite> with <cite>n</cite> the number of
|
||||
instances and <cite>m</cite> the number of classes. The entry <cite>(i,j)</cite> is a binary value indicating whether instance
|
||||
<cite>i `belongs to class `j</cite>. The binary classifications are independent of each other, meaning that an instance
|
||||
|
@ -845,63 +836,6 @@ probabilities are independent of each other, meaning that, in general, they do n
|
|||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.fit">
|
||||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_classifier</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.fit" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Trains the aggregative quantifier</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><ul class="simple">
|
||||
<li><p><strong>data</strong> – a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> consisting of the training data</p></li>
|
||||
<li><p><strong>fit_classifier</strong> – whether or not to train the learner (default is True). Set to False if the
|
||||
learner has been trained outside the quantifier.</p></li>
|
||||
</ul>
|
||||
</dd>
|
||||
<dt class="field-even">Returns<span class="colon">:</span></dt>
|
||||
<dd class="field-even"><p>self</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.get_params">
|
||||
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.get_params" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Get parameters for this estimator.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><p><strong>deep</strong> (<em>bool</em><em>, </em><em>default=True</em>) – If True, will return the parameters for this estimator and
|
||||
contained subobjects that are estimators.</p>
|
||||
</dd>
|
||||
<dt class="field-even">Returns<span class="colon">:</span></dt>
|
||||
<dd class="field-even"><p><strong>params</strong> – Parameter names mapped to their values.</p>
|
||||
</dd>
|
||||
<dt class="field-odd">Return type<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><p>dict</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.set_params">
|
||||
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.set_params" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Set the parameters of this estimator.</p>
|
||||
<p>The method works on simple estimators as well as on nested objects
|
||||
(such as <code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code>). The latter have
|
||||
parameters of the form <code class="docutils literal notranslate"><span class="pre"><component>__<parameter></span></code> so that it’s
|
||||
possible to update each component of a nested object.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><p><strong>**params</strong> (<em>dict</em>) – Estimator parameters.</p>
|
||||
</dd>
|
||||
<dt class="field-even">Returns<span class="colon">:</span></dt>
|
||||
<dd class="field-even"><p><strong>self</strong> – Estimator instance.</p>
|
||||
</dd>
|
||||
<dt class="field-odd">Return type<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><p>estimator instance</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py class">
|
||||
|
@ -1362,38 +1296,57 @@ validation data, or as an integer, indicating that the misclassification rates s
|
|||
</dd></dl>
|
||||
|
||||
<dl class="py class">
|
||||
<dt class="sig sig-object py" id="quapy.method.base.OneVsAllGeneric">
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.method.base.</span></span><span class="sig-name descname"><span class="pre">OneVsAllGeneric</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">binary_quantifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.OneVsAllGeneric" title="Permalink to this definition">¶</a></dt>
|
||||
<dt class="sig sig-object py" id="quapy.method.base.OneVsAll">
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.method.base.</span></span><span class="sig-name descname"><span class="pre">OneVsAll</span></span><a class="headerlink" href="#quapy.method.base.OneVsAll" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py class">
|
||||
<dt class="sig sig-object py" id="quapy.method.base.OneVsAllGeneric">
|
||||
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">quapy.method.base.</span></span><span class="sig-name descname"><span class="pre">OneVsAllGeneric</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">binary_quantifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parallel_backend</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'loky'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.OneVsAllGeneric" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.base.OneVsAll" title="quapy.method.base.OneVsAll"><code class="xref py py-class docutils literal notranslate"><span class="pre">OneVsAll</span></code></a>, <a class="reference internal" href="#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">BaseQuantifier</span></code></a></p>
|
||||
<p>Allows any binary quantifier to perform quantification on single-label datasets. The method maintains one binary
|
||||
quantifier for each class, and then l1-normalizes the outputs so that the class prevelence values sum up to 1.</p>
|
||||
<dl class="py property">
|
||||
<dt class="sig sig-object py" id="quapy.method.base.OneVsAllGeneric.classes">
|
||||
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">classes</span></span><a class="headerlink" href="#quapy.method.base.OneVsAllGeneric.classes" title="Permalink to this definition">¶</a></dt>
|
||||
<dt class="sig sig-object py" id="quapy.method.base.OneVsAllGeneric.classes_">
|
||||
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.method.base.OneVsAllGeneric.classes_" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.method.base.OneVsAllGeneric.fit">
|
||||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.OneVsAllGeneric.fit" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.method.base.OneVsAllGeneric.get_params">
|
||||
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.OneVsAllGeneric.get_params" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_classifier</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.OneVsAllGeneric.fit" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Trains a quantifier.</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><p><strong>data</strong> – a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> consisting of the training data</p>
|
||||
</dd>
|
||||
<dt class="field-even">Returns<span class="colon">:</span></dt>
|
||||
<dd class="field-even"><p>self</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.method.base.OneVsAllGeneric.quantify">
|
||||
<span class="sig-name descname"><span class="pre">quantify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.OneVsAllGeneric.quantify" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
|
||||
<dl class="py method">
|
||||
<dt class="sig sig-object py" id="quapy.method.base.OneVsAllGeneric.set_params">
|
||||
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.OneVsAllGeneric.set_params" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<span class="sig-name descname"><span class="pre">quantify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.OneVsAllGeneric.quantify" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Generate class prevalence estimates for the sample’s instances</p>
|
||||
<dl class="field-list simple">
|
||||
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
||||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||||
</dd>
|
||||
<dt class="field-even">Returns<span class="colon">:</span></dt>
|
||||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(n_classes,)</cite> with class prevalence estimates.</p>
|
||||
</dd>
|
||||
</dl>
|
||||
</dd></dl>
|
||||
|
||||
</dd></dl>
|
||||
|
||||
<dl class="py function">
|
||||
<dt class="sig sig-object py" id="quapy.method.base.getOneVsAll">
|
||||
<span class="sig-prename descclassname"><span class="pre">quapy.method.base.</span></span><span class="sig-name descname"><span class="pre">getOneVsAll</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">binary_quantifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parallel_backend</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'loky'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.getOneVsAll" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
|
||||
</section>
|
||||
<section id="module-quapy.method.meta">
|
||||
<span id="quapy-method-meta"></span><h2>quapy.method.meta<a class="headerlink" href="#module-quapy.method.meta" title="Permalink to this heading">¶</a></h2>
|
||||
|
|
File diff suppressed because one or more lines are too long
|
@ -11,7 +11,7 @@ from sklearn.linear_model import LogisticRegression
|
|||
# Define a custom quantifier: for this example, we will consider a new quantification algorithm that uses a
|
||||
# logistic regressor for generating posterior probabilities, and then applies a custom threshold value to the
|
||||
# posteriors. Since the quantifier internally uses a classifier, it is an aggregative quantifier; and since it
|
||||
# relies on posterior probabilities, then it is a probabilistic aggregative quantifier. Note also it has an
|
||||
# relies on posterior probabilities, it is a probabilistic-aggregative quantifier. Note also it has an
|
||||
# internal hyperparameter (let say, alpha) which is the decision threshold. Let's also assume the quantifier
|
||||
# is binary, for simplicity.
|
||||
|
||||
|
@ -47,13 +47,13 @@ if __name__ == '__main__':
|
|||
|
||||
# load the IMDb dataset
|
||||
train, test = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5).train_test
|
||||
train, val = train.split_stratified(train_prop=0.75)
|
||||
|
||||
# model selection
|
||||
# let us assume we want to explore our hyperparameter alpha along with one hyperparameter of the classifier
|
||||
train, val = train.split_stratified(train_prop=0.75)
|
||||
param_grid = {
|
||||
'alpha': np.linspace(0,1,11), # quantifier-dependent hyperparameter
|
||||
'classifier__C': np.logspace(-2,2,5) # classifier-dependent hyperparameter
|
||||
'alpha': np.linspace(0, 1, 11), # quantifier-dependent hyperparameter
|
||||
'classifier__C': np.logspace(-2, 2, 5) # classifier-dependent hyperparameter
|
||||
}
|
||||
quantifier = GridSearchQ(quantifier, param_grid, protocol=APP(val), n_jobs=-1, verbose=True).fit(train)
|
||||
|
||||
|
|
|
@ -9,19 +9,37 @@ from method.aggregative import EMQ
|
|||
from model_selection import GridSearchQ
|
||||
import pandas as pd
|
||||
|
||||
"""
|
||||
This example shows hoy to use the LeQua datasets (new in v0.1.7). For more information about the datasets, and the
|
||||
LeQua competition itself, check:
|
||||
https://lequa2022.github.io/index (the site of the competition)
|
||||
https://ceur-ws.org/Vol-3180/paper-146.pdf (the overview paper)
|
||||
"""
|
||||
|
||||
# there are 4 tasks (T1A, T1B, T2A, T2B)
|
||||
task = 'T1A'
|
||||
|
||||
# set the sample size in the environment. The sample size is task-dendendent and can be consulted by doing:
|
||||
qp.environ['SAMPLE_SIZE'] = LEQUA2022_SAMPLE_SIZE[task]
|
||||
qp.environ['N_JOBS'] = -1
|
||||
|
||||
# the fetch method returns a training set (an instance of LabelledCollection) and two generators: one for the
|
||||
# validation set and another for the test sets. These generators are both instances of classes that extend
|
||||
# AbstractProtocol (i.e., classes that implement sampling generation procedures) and, in particular, are instances
|
||||
# of SamplesFromDir, a protocol that simply iterates over pre-generated samples (those provided for the competition)
|
||||
# stored in a directory.
|
||||
training, val_generator, test_generator = fetch_lequa2022(task=task)
|
||||
|
||||
# define the quantifier
|
||||
learner = CalibratedClassifierCV(LogisticRegression())
|
||||
quantifier = EMQ(classifier=learner)
|
||||
quantifier = EMQ(classifier=LogisticRegression())
|
||||
|
||||
# model selection
|
||||
param_grid = {'C': np.logspace(-3, 3, 7), 'class_weight': ['balanced', None]}
|
||||
model_selection = GridSearchQ(quantifier, param_grid, protocol=val_generator, n_jobs=-1, refit=False, verbose=True)
|
||||
param_grid = {
|
||||
'classifier__C': np.logspace(-3, 3, 7), # classifier-dependent: inverse of regularization strength
|
||||
'classifier__class_weight': ['balanced', None], # classifier-dependent: weights of each class
|
||||
'recalib': ['bcts', 'platt', None] # quantifier-dependent: recalibration method (new in v0.1.7)
|
||||
}
|
||||
model_selection = GridSearchQ(quantifier, param_grid, protocol=val_generator, error='mrae', refit=False, verbose=True)
|
||||
quantifier = model_selection.fit(training)
|
||||
|
||||
# evaluation
|
||||
|
|
|
@ -12,6 +12,7 @@ and positive. We will use a one-vs-all approach using a binary quantifier for de
|
|||
"""
|
||||
|
||||
qp.environ['SAMPLE_SIZE'] = 100
|
||||
qp.environ['N_JOBS'] = -1
|
||||
|
||||
"""
|
||||
Any binary quantifier can be turned into a single-label quantifier by means of getOneVsAll function.
|
||||
|
@ -21,7 +22,7 @@ an instance of AggregativeQuantifier. Although OneVsAllGeneric works in all case
|
|||
some additional advantages (namely, all the advantages that AggregativeQuantifiers enjoy, i.e., faster predictions
|
||||
during evaluation).
|
||||
"""
|
||||
quantifier = getOneVsAll(MS2(LogisticRegression()), parallel_backend="loky")
|
||||
quantifier = getOneVsAll(MS2(LogisticRegression()))
|
||||
print(f'the quantifier is an instance of {quantifier.__class__.__name__}')
|
||||
|
||||
# load a ternary dataset
|
||||
|
@ -38,8 +39,8 @@ param_grid = {
|
|||
'binary_quantifier__classifier__class_weight': ['balanced', None] # classifier-dependent hyperparameter
|
||||
}
|
||||
print('starting model selection')
|
||||
gs = GridSearchQ(quantifier, param_grid, protocol=USimplexPP(val), n_jobs=-1, verbose=True, refit=False)
|
||||
quantifier = gs.fit(train_modsel).best_model()
|
||||
model_selection = GridSearchQ(quantifier, param_grid, protocol=USimplexPP(val), verbose=True, refit=False)
|
||||
quantifier = model_selection.fit(train_modsel).best_model()
|
||||
|
||||
print('training on the whole training set')
|
||||
train, test = qp.datasets.fetch_twitter('hcr', for_model_selection=False, pickle=True).train_test
|
|
@ -84,7 +84,5 @@ Change Log 0.1.7
|
|||
Things to fix:
|
||||
--------------
|
||||
- update unit tests
|
||||
- update Wikis...
|
||||
- improve plots
|
||||
- documentation of protocols is incomplete
|
||||
|
||||
|
|
|
@ -1262,7 +1262,7 @@ class OneVsAllAggregative(OneVsAllGeneric, AggregativeQuantifier):
|
|||
is removed and no longer available at predict time.
|
||||
"""
|
||||
|
||||
def __init__(self, binary_quantifier, n_jobs=None, parallel_backend='loky'):
|
||||
def __init__(self, binary_quantifier, n_jobs=None, parallel_backend='multiprocessing'):
|
||||
assert isinstance(binary_quantifier, BaseQuantifier), \
|
||||
f'{self.binary_quantifier} does not seem to be a Quantifier'
|
||||
assert isinstance(binary_quantifier, AggregativeQuantifier), \
|
||||
|
|
|
@ -54,13 +54,13 @@ class OneVsAll:
|
|||
pass
|
||||
|
||||
|
||||
def getOneVsAll(binary_quantifier, n_jobs=None, parallel_backend='loky'):
|
||||
def getOneVsAll(binary_quantifier, n_jobs=None):
|
||||
assert isinstance(binary_quantifier, BaseQuantifier), \
|
||||
f'{binary_quantifier} does not seem to be a Quantifier'
|
||||
if isinstance(binary_quantifier, qp.method.aggregative.AggregativeQuantifier):
|
||||
return qp.method.aggregative.OneVsAllAggregative(binary_quantifier, n_jobs, parallel_backend)
|
||||
return qp.method.aggregative.OneVsAllAggregative(binary_quantifier, n_jobs)
|
||||
else:
|
||||
return OneVsAllGeneric(binary_quantifier, n_jobs, parallel_backend)
|
||||
return OneVsAllGeneric(binary_quantifier, n_jobs)
|
||||
|
||||
|
||||
class OneVsAllGeneric(OneVsAll,BaseQuantifier):
|
||||
|
@ -69,7 +69,7 @@ class OneVsAllGeneric(OneVsAll,BaseQuantifier):
|
|||
quantifier for each class, and then l1-normalizes the outputs so that the class prevelence values sum up to 1.
|
||||
"""
|
||||
|
||||
def __init__(self, binary_quantifier, n_jobs=None, parallel_backend='loky'):
|
||||
def __init__(self, binary_quantifier, n_jobs=None):
|
||||
assert isinstance(binary_quantifier, BaseQuantifier), \
|
||||
f'{binary_quantifier} does not seem to be a Quantifier'
|
||||
if isinstance(binary_quantifier, qp.method.aggregative.AggregativeQuantifier):
|
||||
|
@ -77,7 +77,6 @@ class OneVsAllGeneric(OneVsAll,BaseQuantifier):
|
|||
f'you might prefer instantiating {qp.method.aggregative.OneVsAllAggregative.__name__}')
|
||||
self.binary_quantifier = binary_quantifier
|
||||
self.n_jobs = qp._get_njobs(n_jobs)
|
||||
self.parallel_backend = parallel_backend
|
||||
|
||||
def fit(self, data: LabelledCollection, fit_classifier=True):
|
||||
assert not data.binary, f'{self.__class__.__name__} expect non-binary data'
|
||||
|
@ -89,7 +88,7 @@ class OneVsAllGeneric(OneVsAll,BaseQuantifier):
|
|||
|
||||
def _parallel(self, func, *args, **kwargs):
|
||||
return np.asarray(
|
||||
Parallel(n_jobs=self.n_jobs, backend=self.parallel_backend)(
|
||||
Parallel(n_jobs=self.n_jobs, backend='threading')(
|
||||
delayed(func)(c, *args, **kwargs) for c in self.classes_
|
||||
)
|
||||
)
|
||||
|
|
|
@ -86,7 +86,8 @@ class GridSearchQ(BaseQuantifier):
|
|||
|
||||
tinit = time()
|
||||
|
||||
hyper = [dict({k: values[i] for i, k in enumerate(params_keys)}) for values in itertools.product(*params_values)]
|
||||
hyper = [dict({k: val[i] for i, k in enumerate(params_keys)}) for val in itertools.product(*params_values)]
|
||||
self._sout(f'starting model selection with {self.n_jobs =}')
|
||||
#pass a seed to parallel so it is set in clild processes
|
||||
scores = qp.util.parallel(
|
||||
self._delayed_eval,
|
||||
|
|
|
@ -45,13 +45,13 @@ class AbstractStochasticSeededProtocol(AbstractProtocol):
|
|||
needed for extracting the samples, and :meth:`sample` that, given some parameters as input,
|
||||
deterministically generates a sample.
|
||||
|
||||
:param random_state: the seed for allowing to replicate any sequence of samples. Default is None, meaning that
|
||||
the sequence will be different every time the protocol is called.
|
||||
:param random_state: the seed for allowing to replicate any sequence of samples. Default is 0, meaning that
|
||||
the sequence will be consistent every time the protocol is called.
|
||||
"""
|
||||
|
||||
_random_state = -1 # means "not set"
|
||||
|
||||
def __init__(self, random_state=None):
|
||||
def __init__(self, random_state=0):
|
||||
self.random_state = random_state
|
||||
|
||||
@property
|
||||
|
@ -82,6 +82,13 @@ class AbstractStochasticSeededProtocol(AbstractProtocol):
|
|||
...
|
||||
|
||||
def __call__(self):
|
||||
"""
|
||||
Yields one sample at a time. The type of object returned depends on the `collator` function. The
|
||||
default behaviour returns tuples of the form `(sample, prevalence)`.
|
||||
|
||||
:return: a tuple `(sample, prevalence)` if return_type='sample_prev', or an instance of
|
||||
:class:`qp.data.LabelledCollection` if return_type='labelled_collection'
|
||||
"""
|
||||
with ExitStack() as stack:
|
||||
if self.random_state == -1:
|
||||
raise ValueError('The random seed has never been initialized. '
|
||||
|
@ -96,13 +103,33 @@ class AbstractStochasticSeededProtocol(AbstractProtocol):
|
|||
|
||||
|
||||
class OnLabelledCollectionProtocol:
|
||||
"""
|
||||
Protocols that generate samples from a :class:`qp.data.LabelledCollection` object.
|
||||
"""
|
||||
|
||||
RETURN_TYPES = ['sample_prev', 'labelled_collection']
|
||||
|
||||
def get_labelled_collection(self):
|
||||
"""
|
||||
Returns the labelled collection on which this protocol acts.
|
||||
|
||||
:return: an object of type :class:`qp.data.LabelledCollection`
|
||||
"""
|
||||
return self.data
|
||||
|
||||
def on_preclassified_instances(self, pre_classifications, in_place=False):
|
||||
"""
|
||||
Returns a copy of this protocol that acts on a modified version of the original
|
||||
:class:`qp.data.LabelledCollection` in which the original instances have been replaced
|
||||
with the outputs of a classifier for each instance. (This is convenient for speeding-up
|
||||
the evaluation procedures for many samples, by pre-classifying the instances in advance.)
|
||||
|
||||
:param pre_classifications: the predictions issued by a classifier, typically an array-like
|
||||
with shape `(n_instances,)` when the classifier is a hard one, or with shape
|
||||
`(n_instances, n_classes)` when the classifier is a probabilistic one.
|
||||
:param in_place: whether or not to apply the modification in-place or in a new copy (default).
|
||||
:return: a copy of this protocol
|
||||
"""
|
||||
assert len(pre_classifications) == len(self.data), \
|
||||
f'error: the pre-classified data has different shape ' \
|
||||
f'(expected {len(self.data)}, found {len(pre_classifications)})'
|
||||
|
@ -115,6 +142,15 @@ class OnLabelledCollectionProtocol:
|
|||
|
||||
@classmethod
|
||||
def get_collator(cls, return_type='sample_prev'):
|
||||
"""
|
||||
Returns a collator function, i.e., a function that prepares the yielded data
|
||||
|
||||
:param return_type: either 'sample_prev' (default) if the collator is requested to yield tuples of
|
||||
`(sample, prevalence)`, or 'labelled_collection' when it is requested to yield instances of
|
||||
:class:`qp.data.LabelledCollection`
|
||||
:return: the collator function (a callable function that takes as input an instance of
|
||||
:class:`qp.data.LabelledCollection`)
|
||||
"""
|
||||
assert return_type in cls.RETURN_TYPES, \
|
||||
f'unknown return type passed as argument; valid ones are {cls.RETURN_TYPES}'
|
||||
if return_type=='sample_prev':
|
||||
|
@ -139,13 +175,14 @@ class APP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
|
|||
grid (default is 21)
|
||||
:param repeats: number of copies for each valid prevalence vector (default is 10)
|
||||
:param smooth_limits_epsilon: the quantity to add and subtract to the limits 0 and 1
|
||||
:param random_state: allows replicating samples across runs (default None)
|
||||
:param random_state: allows replicating samples across runs (default 0, meaning that the sequence of samples
|
||||
will be the same every time the protocol is called)
|
||||
:param return_type: set to "sample_prev" (default) to get the pairs of (sample, prevalence) at each iteration, or
|
||||
to "labelled_collection" to get instead instances of LabelledCollection
|
||||
"""
|
||||
|
||||
def __init__(self, data:LabelledCollection, sample_size=None, n_prevalences=21, repeats=10,
|
||||
smooth_limits_epsilon=0, random_state=None, return_type='sample_prev'):
|
||||
smooth_limits_epsilon=0, random_state=0, return_type='sample_prev'):
|
||||
super(APP, self).__init__(random_state)
|
||||
self.data = data
|
||||
self.sample_size = qp._get_sample_size(sample_size)
|
||||
|
@ -179,6 +216,11 @@ class APP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
|
|||
return prevs
|
||||
|
||||
def samples_parameters(self):
|
||||
"""
|
||||
Return all the necessary parameters to replicate the samples as according to the APP protocol.
|
||||
|
||||
:return: a list of indexes that realize the APP sampling
|
||||
"""
|
||||
indexes = []
|
||||
for prevs in self.prevalence_grid():
|
||||
index = self.data.sampling_index(self.sample_size, *prevs)
|
||||
|
@ -186,9 +228,20 @@ class APP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
|
|||
return indexes
|
||||
|
||||
def sample(self, index):
|
||||
"""
|
||||
Realizes the sample given the index of the instances.
|
||||
|
||||
:param index: indexes of the instances to select
|
||||
:return: an instance of :class:`qp.data.LabelledCollection`
|
||||
"""
|
||||
return self.data.sampling_from_index(index)
|
||||
|
||||
def total(self):
|
||||
"""
|
||||
Returns the number of samples that will be generated
|
||||
|
||||
:return: int
|
||||
"""
|
||||
return F.num_prevalence_combinations(self.n_prevalences, self.data.n_classes, self.repeats)
|
||||
|
||||
|
||||
|
@ -201,12 +254,14 @@ class NPP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
|
|||
:param sample_size: integer, the number of instances in each sample; if None (default) then it is taken from
|
||||
qp.environ["SAMPLE_SIZE"]. If this is not set, a ValueError exception is raised.
|
||||
:param repeats: the number of samples to generate. Default is 100.
|
||||
:param random_state: allows replicating samples across runs (default None)
|
||||
:param random_state: allows replicating samples across runs (default 0, meaning that the sequence of samples
|
||||
will be the same every time the protocol is called)
|
||||
:param return_type: set to "sample_prev" (default) to get the pairs of (sample, prevalence) at each iteration, or
|
||||
to "labelled_collection" to get instead instances of LabelledCollection
|
||||
"""
|
||||
|
||||
def __init__(self, data:LabelledCollection, sample_size=None, repeats=100, random_state=None, return_type='sample_prev'):
|
||||
def __init__(self, data:LabelledCollection, sample_size=None, repeats=100, random_state=0,
|
||||
return_type='sample_prev'):
|
||||
super(NPP, self).__init__(random_state)
|
||||
self.data = data
|
||||
self.sample_size = qp._get_sample_size(sample_size)
|
||||
|
@ -215,6 +270,11 @@ class NPP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
|
|||
self.collator = OnLabelledCollectionProtocol.get_collator(return_type)
|
||||
|
||||
def samples_parameters(self):
|
||||
"""
|
||||
Return all the necessary parameters to replicate the samples as according to the NPP protocol.
|
||||
|
||||
:return: a list of indexes that realize the NPP sampling
|
||||
"""
|
||||
indexes = []
|
||||
for _ in range(self.repeats):
|
||||
index = self.data.uniform_sampling_index(self.sample_size)
|
||||
|
@ -222,9 +282,20 @@ class NPP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
|
|||
return indexes
|
||||
|
||||
def sample(self, index):
|
||||
"""
|
||||
Realizes the sample given the index of the instances.
|
||||
|
||||
:param index: indexes of the instances to select
|
||||
:return: an instance of :class:`qp.data.LabelledCollection`
|
||||
"""
|
||||
return self.data.sampling_from_index(index)
|
||||
|
||||
def total(self):
|
||||
"""
|
||||
Returns the number of samples that will be generated (equals to "repeats")
|
||||
|
||||
:return: int
|
||||
"""
|
||||
return self.repeats
|
||||
|
||||
|
||||
|
@ -241,12 +312,13 @@ class USimplexPP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol)
|
|||
:param sample_size: integer, the number of instances in each sample; if None (default) then it is taken from
|
||||
qp.environ["SAMPLE_SIZE"]. If this is not set, a ValueError exception is raised.
|
||||
:param repeats: the number of samples to generate. Default is 100.
|
||||
:param random_state: allows replicating samples across runs (default None)
|
||||
:param random_state: allows replicating samples across runs (default 0, meaning that the sequence of samples
|
||||
will be the same every time the protocol is called)
|
||||
:param return_type: set to "sample_prev" (default) to get the pairs of (sample, prevalence) at each iteration, or
|
||||
to "labelled_collection" to get instead instances of LabelledCollection
|
||||
"""
|
||||
|
||||
def __init__(self, data: LabelledCollection, sample_size=None, repeats=100, random_state=None,
|
||||
def __init__(self, data: LabelledCollection, sample_size=None, repeats=100, random_state=0,
|
||||
return_type='sample_prev'):
|
||||
super(USimplexPP, self).__init__(random_state)
|
||||
self.data = data
|
||||
|
@ -256,6 +328,11 @@ class USimplexPP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol)
|
|||
self.collator = OnLabelledCollectionProtocol.get_collator(return_type)
|
||||
|
||||
def samples_parameters(self):
|
||||
"""
|
||||
Return all the necessary parameters to replicate the samples as according to the USimplexPP protocol.
|
||||
|
||||
:return: a list of indexes that realize the USimplexPP sampling
|
||||
"""
|
||||
indexes = []
|
||||
for prevs in F.uniform_simplex_sampling(n_classes=self.data.n_classes, size=self.repeats):
|
||||
index = self.data.sampling_index(self.sample_size, *prevs)
|
||||
|
@ -263,9 +340,20 @@ class USimplexPP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol)
|
|||
return indexes
|
||||
|
||||
def sample(self, index):
|
||||
"""
|
||||
Realizes the sample given the index of the instances.
|
||||
|
||||
:param index: indexes of the instances to select
|
||||
:return: an instance of :class:`qp.data.LabelledCollection`
|
||||
"""
|
||||
return self.data.sampling_from_index(index)
|
||||
|
||||
def total(self):
|
||||
"""
|
||||
Returns the number of samples that will be generated (equals to "repeats")
|
||||
|
||||
:return: int
|
||||
"""
|
||||
return self.repeats
|
||||
|
||||
|
||||
|
@ -273,17 +361,19 @@ class DomainMixer(AbstractStochasticSeededProtocol):
|
|||
"""
|
||||
Generates mixtures of two domains (A and B) at controlled rates, but preserving the original class prevalence.
|
||||
|
||||
:param domainA:
|
||||
:param domainB:
|
||||
:param sample_size:
|
||||
:param repeats:
|
||||
:param domainA: one domain, an object of :class:`qp.data.LabelledCollection`
|
||||
:param domainB: another domain, an object of :class:`qp.data.LabelledCollection`
|
||||
:param sample_size: integer, the number of instances in each sample; if None (default) then it is taken from
|
||||
qp.environ["SAMPLE_SIZE"]. If this is not set, a ValueError exception is raised.
|
||||
:param repeats: int, number of samples to draw for every mixture rate
|
||||
:param prevalence: the prevalence to preserv along the mixtures. If specified, should be an array containing
|
||||
one prevalence value (positive float) for each class and summing up to one. If not specified, the prevalence
|
||||
will be taken from the domain A (default).
|
||||
:param mixture_points: an integer indicating the number of points to take from a linear scale (e.g., 21 will
|
||||
generate the mixture points [1, 0.95, 0.9, ..., 0]), or the array of mixture values itself.
|
||||
the specific points
|
||||
:param random_state:
|
||||
:param random_state: allows replicating samples across runs (default 0, meaning that the sequence of samples
|
||||
will be the same every time the protocol is called)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
|
@ -294,7 +384,7 @@ class DomainMixer(AbstractStochasticSeededProtocol):
|
|||
repeats=1,
|
||||
prevalence=None,
|
||||
mixture_points=11,
|
||||
random_state=None,
|
||||
random_state=0,
|
||||
return_type='sample_prev'):
|
||||
super(DomainMixer, self).__init__(random_state)
|
||||
self.A = domainA
|
||||
|
@ -319,6 +409,11 @@ class DomainMixer(AbstractStochasticSeededProtocol):
|
|||
self.collator = OnLabelledCollectionProtocol.get_collator(return_type)
|
||||
|
||||
def samples_parameters(self):
|
||||
"""
|
||||
Return all the necessary parameters to replicate the samples as according to the this protocol.
|
||||
|
||||
:return: a list of zipped indexes (from A and B) that realize the sampling
|
||||
"""
|
||||
indexesA, indexesB = [], []
|
||||
for propA in self.mixture_points:
|
||||
for _ in range(self.repeats):
|
||||
|
@ -331,12 +426,23 @@ class DomainMixer(AbstractStochasticSeededProtocol):
|
|||
return list(zip(indexesA, indexesB))
|
||||
|
||||
def sample(self, indexes):
|
||||
"""
|
||||
Realizes the sample given a pair of indexes of the instances from A and B.
|
||||
|
||||
:param indexes: indexes of the instances to select from A and B
|
||||
:return: an instance of :class:`qp.data.LabelledCollection`
|
||||
"""
|
||||
indexesA, indexesB = indexes
|
||||
sampleA = self.A.sampling_from_index(indexesA)
|
||||
sampleB = self.B.sampling_from_index(indexesB)
|
||||
return sampleA+sampleB
|
||||
|
||||
def total(self):
|
||||
"""
|
||||
Returns the number of samples that will be generated (equals to "repeats * mixture_points")
|
||||
|
||||
:return: int
|
||||
"""
|
||||
return self.repeats * len(self.mixture_points)
|
||||
|
||||
|
||||
|
|
|
@ -28,13 +28,27 @@ class TestProtocols(unittest.TestCase):
|
|||
|
||||
self.assertEqual(samples1, samples2)
|
||||
|
||||
def test_app_not_replicate(self):
|
||||
data = mock_labelled_collection()
|
||||
p = APP(data, sample_size=5, n_prevalences=11)
|
||||
p = APP(data, sample_size=5, n_prevalences=11) # <- random_state is by default set to 0
|
||||
|
||||
samples1 = samples_to_str(p)
|
||||
samples2 = samples_to_str(p)
|
||||
|
||||
self.assertEqual(samples1, samples2)
|
||||
|
||||
def test_app_not_replicate(self):
|
||||
data = mock_labelled_collection()
|
||||
p = APP(data, sample_size=5, n_prevalences=11, random_state=None)
|
||||
|
||||
samples1 = samples_to_str(p)
|
||||
samples2 = samples_to_str(p)
|
||||
|
||||
self.assertNotEqual(samples1, samples2)
|
||||
|
||||
p = APP(data, sample_size=5, n_prevalences=11, random_state=42)
|
||||
samples1 = samples_to_str(p)
|
||||
p = APP(data, sample_size=5, n_prevalences=11, random_state=0)
|
||||
samples2 = samples_to_str(p)
|
||||
|
||||
self.assertNotEqual(samples1, samples2)
|
||||
|
||||
def test_app_number(self):
|
||||
|
@ -64,13 +78,26 @@ class TestProtocols(unittest.TestCase):
|
|||
|
||||
self.assertEqual(samples1, samples2)
|
||||
|
||||
def test_npp_not_replicate(self):
|
||||
data = mock_labelled_collection()
|
||||
p = NPP(data, sample_size=5, repeats=5)
|
||||
p = NPP(data, sample_size=5, repeats=5) # <- random_state is by default set to 0
|
||||
|
||||
samples1 = samples_to_str(p)
|
||||
samples2 = samples_to_str(p)
|
||||
|
||||
self.assertEqual(samples1, samples2)
|
||||
|
||||
def test_npp_not_replicate(self):
|
||||
data = mock_labelled_collection()
|
||||
p = NPP(data, sample_size=5, repeats=5, random_state=None)
|
||||
|
||||
samples1 = samples_to_str(p)
|
||||
samples2 = samples_to_str(p)
|
||||
|
||||
self.assertNotEqual(samples1, samples2)
|
||||
|
||||
p = NPP(data, sample_size=5, repeats=5, random_state=42)
|
||||
samples1 = samples_to_str(p)
|
||||
p = NPP(data, sample_size=5, repeats=5, random_state=0)
|
||||
samples2 = samples_to_str(p)
|
||||
self.assertNotEqual(samples1, samples2)
|
||||
|
||||
def test_kraemer_replicate(self):
|
||||
|
@ -82,9 +109,16 @@ class TestProtocols(unittest.TestCase):
|
|||
|
||||
self.assertEqual(samples1, samples2)
|
||||
|
||||
p = USimplexPP(data, sample_size=5, repeats=10) # <- random_state is by default set to 0
|
||||
|
||||
samples1 = samples_to_str(p)
|
||||
samples2 = samples_to_str(p)
|
||||
|
||||
self.assertEqual(samples1, samples2)
|
||||
|
||||
def test_kraemer_not_replicate(self):
|
||||
data = mock_labelled_collection()
|
||||
p = USimplexPP(data, sample_size=5, repeats=10)
|
||||
p = USimplexPP(data, sample_size=5, repeats=10, random_state=None)
|
||||
|
||||
samples1 = samples_to_str(p)
|
||||
samples2 = samples_to_str(p)
|
||||
|
@ -101,10 +135,17 @@ class TestProtocols(unittest.TestCase):
|
|||
|
||||
self.assertEqual(samples1, samples2)
|
||||
|
||||
p = DomainMixer(dataA, dataB, sample_size=10, mixture_points=11) # <- random_state is by default set to 0
|
||||
|
||||
samples1 = samples_to_str(p)
|
||||
samples2 = samples_to_str(p)
|
||||
|
||||
self.assertEqual(samples1, samples2)
|
||||
|
||||
def test_covariate_shift_not_replicate(self):
|
||||
dataA = mock_labelled_collection('domA')
|
||||
dataB = mock_labelled_collection('domB')
|
||||
p = DomainMixer(dataA, dataB, sample_size=10, mixture_points=11)
|
||||
p = DomainMixer(dataA, dataB, sample_size=10, mixture_points=11, random_state=None)
|
||||
|
||||
samples1 = samples_to_str(p)
|
||||
samples2 = samples_to_str(p)
|
||||
|
|
Loading…
Reference in New Issue