refactoring everything
This commit is contained in:
parent
8399552c8d
commit
985f430d52
|
@ -8,50 +8,28 @@ from quapy.protocol import AbstractProtocol
|
|||
import json
|
||||
|
||||
|
||||
def load_txt_sample(path, parse_columns, verbose=False, max_lines=None):
|
||||
# print('reading', path)
|
||||
if verbose:
|
||||
print(f'loading {path}...', end='')
|
||||
df = pd.read_csv(path, sep='\t')
|
||||
if verbose:
|
||||
print('[done]')
|
||||
X = df['text'].values
|
||||
y = df['continent'].values
|
||||
def load_sample(path, class_name, max_lines=-1):
|
||||
"""
|
||||
Loads a sample json as a dataframe and returns text and labels for
|
||||
the given class_name
|
||||
|
||||
if parse_columns:
|
||||
rank = df['rank'].values
|
||||
scores = df['score'].values
|
||||
rank = rank[y != 'Antarctica']
|
||||
scores = scores[y != 'Antarctica']
|
||||
|
||||
X = X[y!='Antarctica']
|
||||
y = y[y!='Antarctica']
|
||||
|
||||
if parse_columns:
|
||||
order = np.argsort(rank)
|
||||
X = X[order]
|
||||
y = y[order]
|
||||
rank = rank[order]
|
||||
scores = scores[order]
|
||||
|
||||
if max_lines is not None:
|
||||
X = X[:max_lines]
|
||||
y = y[:max_lines]
|
||||
|
||||
return X, y
|
||||
|
||||
|
||||
def load_json_sample(path, class_name, max_lines=-1):
|
||||
obj = json.load(open(path, 'rt'))
|
||||
keys = [f'{id}' for id in range(len(obj['text'].keys()))]
|
||||
text = [obj['text'][id] for id in keys]
|
||||
#print(list(obj.keys()))
|
||||
#import sys; sys.exit(0)
|
||||
classes = [obj[class_name][id] for id in keys]
|
||||
:param path: path to a json file
|
||||
:param class_name: string representing the target class
|
||||
:param max_lines: if provided and > 0 then returns only the
|
||||
first requested number of instances
|
||||
:return: texts and labels for class_name
|
||||
"""
|
||||
df = pd.read_json(path)
|
||||
text = df.text.values
|
||||
try:
|
||||
labels = df[class_name].values
|
||||
except KeyError as e:
|
||||
print(f'error in {path}; key {class_name} not found')
|
||||
raise e
|
||||
if max_lines is not None and max_lines>0:
|
||||
text = text[:max_lines]
|
||||
classes = classes[:max_lines]
|
||||
return text, classes
|
||||
labels = labels[:max_lines]
|
||||
return text, labels
|
||||
|
||||
|
||||
class TextRankings:
|
||||
|
@ -75,49 +53,81 @@ class TextRankings:
|
|||
return texts, labels
|
||||
|
||||
|
||||
def get_query_id_from_path(path, prefix='training', posfix='200SPLIT'):
|
||||
qid = path
|
||||
qid = qid[:qid.index(posfix)]
|
||||
qid = qid[qid.index(prefix)+len(prefix):]
|
||||
return qid
|
||||
def filter_by_classes(X, y, classes):
|
||||
idx = np.isin(y, classes)
|
||||
return X[idx], y[idx]
|
||||
|
||||
|
||||
class RetrievedSamples(AbstractProtocol):
|
||||
|
||||
def __init__(self, path_dir: str, load_fn, vectorizer, max_train_lines=None, max_test_lines=None, classes=None, class_name=None):
|
||||
self.path_dir = path_dir
|
||||
def __init__(self,
|
||||
class_home: str,
|
||||
test_rankings_path: str,
|
||||
load_fn,
|
||||
vectorizer,
|
||||
class_name,
|
||||
max_train_lines=None,
|
||||
max_test_lines=None,
|
||||
classes=None
|
||||
):
|
||||
self.class_home = class_home
|
||||
self.test_rankings_df = pd.read_json(test_rankings_path)
|
||||
self.load_fn = load_fn
|
||||
self.vectorizer = vectorizer
|
||||
self.class_name = class_name
|
||||
self.max_train_lines = max_train_lines
|
||||
self.max_test_lines = max_test_lines
|
||||
self.classes=classes
|
||||
assert class_name is not None, 'class name should be specified'
|
||||
self.class_name = class_name
|
||||
self.text_samples = TextRankings(join(self.path_dir, 'testRankingsRetrieval.json'), class_name=class_name)
|
||||
|
||||
|
||||
def __call__(self):
|
||||
|
||||
for file in glob(join(self.path_dir, 'training*SPLIT.json')):
|
||||
for file in self._list_queries():
|
||||
|
||||
X, y = self.load_fn(file, class_name=self.class_name, max_lines=self.max_train_lines)
|
||||
X = self.vectorizer.transform(X)
|
||||
texts, y = self.load_fn(file, class_name=self.class_name, max_lines=self.max_train_lines)
|
||||
texts, y = filter_by_classes(texts, y, self.classes)
|
||||
X = self.vectorizer.transform(texts)
|
||||
train_sample = LabelledCollection(X, y, classes=self.classes)
|
||||
|
||||
query_id = get_query_id_from_path(file)
|
||||
X, y = self.text_samples.get_sample_Xy(query_id, max_lines=self.max_test_lines)
|
||||
query_id = self._get_query_id_from_path(file)
|
||||
texts, y = self._get_test_sample(query_id, max_lines=self.max_test_lines)
|
||||
texts, y = filter_by_classes(texts, y, self.classes)
|
||||
X = self.vectorizer.transform(texts)
|
||||
|
||||
# if len(X)!=qp.environ['SAMPLE_SIZE']:
|
||||
# print(f'[warning]: file {file} contains {len(X)} instances (expected: {qp.environ["SAMPLE_SIZE"]})')
|
||||
# assert len(X) == qp.environ['SAMPLE_SIZE'], f'unexpected sample size for file {file}, found {len(X)}'
|
||||
X = self.vectorizer.transform(X)
|
||||
try:
|
||||
test_sample = LabelledCollection(X, y, classes=train_sample.classes_)
|
||||
yield train_sample, test_sample
|
||||
except ValueError as e:
|
||||
print(f'file {file} caused error {e}')
|
||||
print(f'file {file} caused an exception: {e}')
|
||||
yield None, None
|
||||
|
||||
# print('train #classes:', train_sample.n_classes, train_sample.prevalence())
|
||||
# print('test #classes:', test_sample.n_classes, test_sample.prevalence())
|
||||
|
||||
yield train_sample, test_sample
|
||||
def _list_queries(self):
|
||||
return sorted(glob(join(self.class_home, 'training_Query*200SPLIT.json')))
|
||||
|
||||
def _get_test_sample(self, query_id, max_lines=-1):
|
||||
df = self.test_rankings_df
|
||||
sel_df = df[df.qid==int(query_id)]
|
||||
texts = sel_df.text.values
|
||||
try:
|
||||
labels = sel_df[self.class_name].values
|
||||
except KeyError as e:
|
||||
print(f'error: key {self.class_name} not found in test rankings')
|
||||
raise e
|
||||
if max_lines > 0 and len(texts) > max_lines:
|
||||
ranks = sel_df.rank.values
|
||||
idx = np.argsort(ranks)[:max_lines]
|
||||
texts = np.asarray(texts)[idx]
|
||||
labels = np.asarray(labels)[idx]
|
||||
return texts, labels
|
||||
|
||||
def total(self):
|
||||
return len(self._list_queries())
|
||||
|
||||
def _get_query_id_from_path(self, path):
|
||||
prefix = 'training_Query-'
|
||||
posfix = 'Sample-200SPLIT'
|
||||
qid = path
|
||||
qid = qid[:qid.index(posfix)]
|
||||
qid = qid[qid.index(prefix) + len(prefix):]
|
||||
return qid
|
|
@ -1,427 +0,0 @@
|
|||
import os.path
|
||||
import numpy as np
|
||||
import itertools
|
||||
from scipy.stats import ttest_ind_from_stats, wilcoxon
|
||||
from pathlib import Path
|
||||
from os.path import join
|
||||
|
||||
|
||||
class Table:
|
||||
VALID_TESTS = [None, "wilcoxon", "ttest"]
|
||||
|
||||
def __init__(self, benchmarks, methods, lower_is_better=True, ttest='ttest', prec_mean=3,
|
||||
clean_zero=False, show_std=False, prec_std=3, average=True, missing=None, missing_str='--',
|
||||
color=True, color_mode='local', maxtone=50):
|
||||
assert ttest in self.VALID_TESTS, f'unknown test, valid are {self.VALID_TESTS}'
|
||||
|
||||
self.benchmarks = np.asarray(benchmarks)
|
||||
self.benchmark_index = {row:i for i, row in enumerate(benchmarks)}
|
||||
|
||||
self.methods = np.asarray(methods)
|
||||
self.method_index = {col:j for j, col in enumerate(methods)}
|
||||
|
||||
self.map = {}
|
||||
# keyed (#rows,#cols)-ndarrays holding computations from self.map['values']
|
||||
self._addmap('values', dtype=object)
|
||||
self.lower_is_better = lower_is_better
|
||||
self.ttest = ttest
|
||||
self.prec_mean = prec_mean
|
||||
self.clean_zero = clean_zero
|
||||
self.show_std = show_std
|
||||
self.prec_std = prec_std
|
||||
self.add_average = average
|
||||
self.missing = missing
|
||||
self.missing_str = missing_str
|
||||
self.color = color
|
||||
self.color_mode = color_mode
|
||||
self.maxtone = maxtone
|
||||
|
||||
self.touch()
|
||||
|
||||
@property
|
||||
def nbenchmarks(self):
|
||||
return len(self.benchmarks)
|
||||
|
||||
@property
|
||||
def nmethods(self):
|
||||
return len(self.methods)
|
||||
|
||||
def touch(self):
|
||||
self._modif = True
|
||||
|
||||
def update(self):
|
||||
if self._modif:
|
||||
self.compute()
|
||||
|
||||
def _getfilled(self):
|
||||
return np.argwhere(self.map['fill'])
|
||||
|
||||
@property
|
||||
def values(self):
|
||||
return self.map['values']
|
||||
|
||||
def _indexes(self):
|
||||
return itertools.product(range(self.nbenchmarks), range(self.nmethods))
|
||||
|
||||
def _addmap(self, map, dtype, func=None):
|
||||
self.map[map] = np.empty((self.nbenchmarks, self.nmethods), dtype=dtype)
|
||||
if func is None:
|
||||
return
|
||||
m = self.map[map]
|
||||
f = func
|
||||
indexes = self._indexes() if map == 'fill' else self._getfilled()
|
||||
for i, j in indexes:
|
||||
m[i, j] = f(self.values[i, j])
|
||||
|
||||
def _addrank(self):
|
||||
for i in range(self.nbenchmarks):
|
||||
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
||||
col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
|
||||
ranked_cols_idx = filled_cols_idx[np.argsort(col_means)]
|
||||
if not self.lower_is_better:
|
||||
ranked_cols_idx = ranked_cols_idx[::-1]
|
||||
self.map['rank'][i, ranked_cols_idx] = np.arange(1, len(filled_cols_idx)+1)
|
||||
|
||||
def _addcolor(self):
|
||||
minval = {}
|
||||
maxval = {}
|
||||
|
||||
if self.color_mode == 'global':
|
||||
filled_cols_idx = np.argwhere(self.map['fill'])
|
||||
col_means = [self.map['mean'][i, j] for i, j in filled_cols_idx]
|
||||
if len(filled_cols_idx) > 0:
|
||||
global_minval = min(col_means)
|
||||
global_maxval = max(col_means)
|
||||
for i in range(self.nbenchmarks):
|
||||
minval[i] = global_minval
|
||||
maxval[i] = global_maxval
|
||||
elif self.color_mode == 'local':
|
||||
for i in range(self.nbenchmarks):
|
||||
filled_cols_idx = np.argwhere(self.map['fill'][i, i + 1])
|
||||
if len(filled_cols_idx)>0:
|
||||
col_means = [self.map['mean'][i, j] for j in filled_cols_idx]
|
||||
minval[i] = min(col_means)
|
||||
maxval[i] = max(col_means)
|
||||
|
||||
else:
|
||||
print(f'color mode {self.color_mode} not understood, valid ones are "local" and "global"; skip')
|
||||
return
|
||||
|
||||
|
||||
for i in range(self.nbenchmarks):
|
||||
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
||||
for col_idx in filled_cols_idx:
|
||||
val = self.map['mean'][i,col_idx]
|
||||
if i not in maxval or i not in minval:
|
||||
continue
|
||||
norm = (maxval[i] - minval[i])
|
||||
if norm > 0:
|
||||
normval = (val - minval[i]) / norm
|
||||
else:
|
||||
normval = 0.5
|
||||
|
||||
if self.lower_is_better:
|
||||
normval = 1 - normval
|
||||
|
||||
normval = np.clip(normval, 0,1)
|
||||
|
||||
self.map['color'][i, col_idx] = color_red2green_01(normval, self.maxtone)
|
||||
|
||||
def _run_ttest(self, row, col1, col2):
|
||||
mean1 = self.map['mean'][row, col1]
|
||||
std1 = self.map['std'][row, col1]
|
||||
nobs1 = self.map['nobs'][row, col1]
|
||||
mean2 = self.map['mean'][row, col2]
|
||||
std2 = self.map['std'][row, col2]
|
||||
nobs2 = self.map['nobs'][row, col2]
|
||||
_, p_val = ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2)
|
||||
return p_val
|
||||
|
||||
def _run_wilcoxon(self, row, col1, col2):
|
||||
values1 = self.map['values'][row, col1]
|
||||
values2 = self.map['values'][row, col2]
|
||||
try:
|
||||
_, p_val = wilcoxon(values1, values2)
|
||||
except ValueError:
|
||||
p_val = 0
|
||||
return p_val
|
||||
|
||||
def _add_statistical_test(self):
|
||||
if self.ttest is None:
|
||||
return
|
||||
self.some_similar = [False]*self.nmethods
|
||||
for i in range(self.nbenchmarks):
|
||||
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
|
||||
if len(filled_cols_idx) <= 1:
|
||||
continue
|
||||
col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
|
||||
best_pos = filled_cols_idx[np.argmin(col_means)]
|
||||
|
||||
for j in filled_cols_idx:
|
||||
if j==best_pos:
|
||||
continue
|
||||
if self.ttest == 'ttest':
|
||||
p_val = self._run_ttest(i, best_pos, j)
|
||||
else:
|
||||
p_val = self._run_wilcoxon(i, best_pos, j)
|
||||
|
||||
pval_outcome = pval_interpretation(p_val)
|
||||
self.map['ttest'][i, j] = pval_outcome
|
||||
if pval_outcome != 'Diff':
|
||||
self.some_similar[j] = True
|
||||
|
||||
def compute(self):
|
||||
self._addmap('fill', dtype=bool, func=lambda x: x is not None)
|
||||
self._addmap('mean', dtype=float, func=np.mean)
|
||||
self._addmap('std', dtype=float, func=np.std)
|
||||
self._addmap('nobs', dtype=float, func=len)
|
||||
self._addmap('rank', dtype=int, func=None)
|
||||
self._addmap('color', dtype=object, func=None)
|
||||
self._addmap('ttest', dtype=object, func=None)
|
||||
self._addmap('latex', dtype=object, func=None)
|
||||
self._addrank()
|
||||
self._addcolor()
|
||||
self._add_statistical_test()
|
||||
if self.add_average:
|
||||
self._addave()
|
||||
self._modif = False
|
||||
|
||||
def _is_column_full(self, col):
|
||||
return all(self.map['fill'][:, self.method_index[col]])
|
||||
|
||||
def _addave(self):
|
||||
ave = Table(['ave'], self.methods,
|
||||
lower_is_better=self.lower_is_better,
|
||||
ttest=self.ttest,
|
||||
average=False,
|
||||
missing=self.missing,
|
||||
missing_str=self.missing_str,
|
||||
prec_mean=self.prec_mean,
|
||||
prec_std=self.prec_std,
|
||||
clean_zero=self.clean_zero,
|
||||
show_std=self.show_std,
|
||||
color=self.color,
|
||||
maxtone=self.maxtone)
|
||||
for col in self.methods:
|
||||
values = None
|
||||
if self._is_column_full(col):
|
||||
if self.ttest == 'ttest':
|
||||
# values = np.asarray(self.map['mean'][:, self.method_index[col]])
|
||||
values = np.concatenate(self.values[:, self.method_index[col]])
|
||||
else: # wilcoxon
|
||||
# values = np.asarray(self.map['mean'][:, self.method_index[col]])
|
||||
values = np.concatenate(self.values[:, self.method_index[col]])
|
||||
ave.add('ave', col, values)
|
||||
self.average = ave
|
||||
|
||||
def add(self, benchmark, method, values):
|
||||
if values is not None:
|
||||
values = np.asarray(values)
|
||||
if values.ndim==0:
|
||||
values = values.flatten()
|
||||
rid, cid = self._coordinates(benchmark, method)
|
||||
self.map['values'][rid, cid] = values
|
||||
self.touch()
|
||||
|
||||
def get(self, benchmark, method, attr='mean'):
|
||||
self.update()
|
||||
assert attr in self.map, f'unknwon attribute {attr}'
|
||||
rid, cid = self._coordinates(benchmark, method)
|
||||
if self.map['fill'][rid, cid]:
|
||||
v = self.map[attr][rid, cid]
|
||||
if v is None or (isinstance(v,float) and np.isnan(v)):
|
||||
return self.missing
|
||||
return v
|
||||
else:
|
||||
return self.missing
|
||||
|
||||
def _coordinates(self, benchmark, method):
|
||||
assert benchmark in self.benchmark_index, f'benchmark {benchmark} out of range'
|
||||
assert method in self.method_index, f'method {method} out of range'
|
||||
rid = self.benchmark_index[benchmark]
|
||||
cid = self.method_index[method]
|
||||
return rid, cid
|
||||
|
||||
def get_average(self, method, attr='mean'):
|
||||
self.update()
|
||||
if self.add_average:
|
||||
return self.average.get('ave', method, attr=attr)
|
||||
return None
|
||||
|
||||
def get_color(self, benchmark, method):
|
||||
color = self.get(benchmark, method, attr='color')
|
||||
if color is None:
|
||||
return ''
|
||||
return color
|
||||
|
||||
def latex(self, benchmark, method):
|
||||
self.update()
|
||||
i,j = self._coordinates(benchmark, method)
|
||||
if self.map['fill'][i,j] == False:
|
||||
return self.missing_str
|
||||
|
||||
mean = self.map['mean'][i,j]
|
||||
l = f" {mean:.{self.prec_mean}f}"
|
||||
if self.clean_zero:
|
||||
l = l.replace(' 0.', '.')
|
||||
|
||||
isbest = self.map['rank'][i,j] == 1
|
||||
if isbest:
|
||||
l = "\\textbf{"+l.strip()+"}"
|
||||
|
||||
stat = '' if self.ttest is None else '^{\phantom{\ddag}}'
|
||||
if self.ttest is not None and self.some_similar[j]:
|
||||
test_label = self.map['ttest'][i,j]
|
||||
if test_label == 'Sim':
|
||||
stat = '^{\dag}'
|
||||
elif test_label == 'Same':
|
||||
stat = '^{\ddag}'
|
||||
elif isbest or test_label == 'Diff':
|
||||
stat = '^{\phantom{\ddag}}'
|
||||
|
||||
std = ''
|
||||
if self.show_std:
|
||||
std = self.map['std'][i,j]
|
||||
std = f" {std:.{self.prec_std}f}"
|
||||
if self.clean_zero:
|
||||
std = std.replace(' 0.', '.')
|
||||
std = f"\pm {std:{self.prec_std}}"
|
||||
|
||||
if stat!='' or std!='':
|
||||
l = f'{l}${stat}{std}$'
|
||||
|
||||
if self.color:
|
||||
l += ' ' + self.map['color'][i,j]
|
||||
|
||||
return l
|
||||
|
||||
def latexPDF(self, path, name:str, *args, **kwargs):
|
||||
if not name.endswith('.tex'):
|
||||
name += '.tex'
|
||||
|
||||
self.latexSaveDocument(join(path, name), *args, **kwargs)
|
||||
|
||||
print("[Tables Done] runing latex")
|
||||
os.chdir(path)
|
||||
os.system('pdflatex '+name)
|
||||
basename = name.replace('.tex', '')
|
||||
os.system(f'rm {basename}.aux {basename}.bbl {basename}.blg {basename}.log {basename}.out {basename}.dvi')
|
||||
os.chdir('..')
|
||||
|
||||
def latexSaveDocument(self, path, *args, **kwargs):
|
||||
document = self.latexDocument(*args, **kwargs)
|
||||
parent = Path(path).parent
|
||||
os.makedirs(parent, exist_ok=True)
|
||||
with open(path, 'wt') as foo:
|
||||
foo.write(document)
|
||||
print('text file save at ', path)
|
||||
|
||||
def latexDocument(self, *args, **kwargs):
|
||||
document = """
|
||||
\\documentclass[10pt,a4paper]{article}
|
||||
\\usepackage[utf8]{inputenc}
|
||||
\\usepackage{amsmath}
|
||||
\\usepackage{amsfonts}
|
||||
\\usepackage{amssymb}
|
||||
\\usepackage{graphicx}
|
||||
\\usepackage{xcolor}
|
||||
\\usepackage{colortbl}
|
||||
|
||||
\\begin{document}
|
||||
"""
|
||||
document += self.latexTable(*args, **kwargs)
|
||||
document += "\n\end{document}\n"
|
||||
return document
|
||||
|
||||
def latexTable(self, benchmark_replace={}, method_replace={}, aslines=False, endl='\\\\\hline', resizebox=True):
|
||||
table = """
|
||||
\\begin{table}
|
||||
\center
|
||||
%%%\\resizebox{\\textwidth}{!}{% \n
|
||||
"""
|
||||
table += "\n\\begin{tabular}{|c"+"|c" * self.nmethods + "|}\n"
|
||||
table += self.latexTabular(benchmark_replace, method_replace, aslines, endl)
|
||||
table += "\n\\end{tabular}\n"
|
||||
table += """
|
||||
%%%}%
|
||||
\end{table}
|
||||
"""
|
||||
if resizebox:
|
||||
table = table.replace("%%%", "")
|
||||
return table
|
||||
|
||||
def latexTabular(self, benchmark_replace={}, method_replace={}, aslines=False, endl='\\\\\hline'):
|
||||
lines = []
|
||||
l = '\multicolumn{1}{c|}{} & '
|
||||
l += ' & '.join([method_replace.get(col, col) for col in self.methods])
|
||||
l += ' \\\\\hline'
|
||||
lines.append(l)
|
||||
|
||||
for row in self.benchmarks:
|
||||
rowname = benchmark_replace.get(row, row)
|
||||
l = rowname + ' & '
|
||||
l += self.latexRow(row, endl=endl)
|
||||
lines.append(l)
|
||||
|
||||
if self.add_average:
|
||||
# l += '\hline\n'
|
||||
l = '\hline \n \\textit{Average} & '
|
||||
l += self.latexAverage(endl=endl)
|
||||
lines.append(l)
|
||||
if not aslines:
|
||||
lines='\n'.join(lines)
|
||||
return lines
|
||||
|
||||
def latexRow(self, benchmark, endl='\\\\\hline\n'):
|
||||
s = [self.latex(benchmark, col) for col in self.methods]
|
||||
s = ' & '.join(s)
|
||||
s += ' ' + endl
|
||||
return s
|
||||
|
||||
def latexAverage(self, endl='\\\\\hline\n'):
|
||||
if self.add_average:
|
||||
return self.average.latexRow('ave', endl=endl)
|
||||
|
||||
def getRankTable(self, prec_mean=0):
|
||||
t = Table(benchmarks=self.benchmarks, methods=self.methods, prec_mean=prec_mean, average=True, maxtone=self.maxtone, ttest=None)
|
||||
for rid, cid in self._getfilled():
|
||||
row = self.benchmarks[rid]
|
||||
col = self.methods[cid]
|
||||
t.add(row, col, self.get(row, col, 'rank'))
|
||||
t.compute()
|
||||
return t
|
||||
|
||||
def dropMethods(self, methods):
|
||||
drop_index = [self.method_index[m] for m in methods]
|
||||
new_methods = np.delete(self.methods, drop_index)
|
||||
new_index = {col:j for j, col in enumerate(new_methods)}
|
||||
|
||||
self.map['values'] = self.values[:,np.asarray([self.method_index[m] for m in new_methods], dtype=int)]
|
||||
self.methods = new_methods
|
||||
self.method_index = new_index
|
||||
self.touch()
|
||||
|
||||
|
||||
def pval_interpretation(p_val):
|
||||
if 0.005 >= p_val:
|
||||
return 'Diff'
|
||||
elif 0.05 >= p_val > 0.005:
|
||||
return 'Sim'
|
||||
elif p_val > 0.05:
|
||||
return 'Same'
|
||||
|
||||
|
||||
def color_red2green_01(val, maxtone=50):
|
||||
if np.isnan(val): return None
|
||||
assert 0 <= val <= 1, f'val {val} out of range [0,1]'
|
||||
|
||||
|
||||
# rescale to [-1,1]
|
||||
val = val * 2 - 1
|
||||
if val < 0:
|
||||
color = 'red'
|
||||
tone = maxtone * (-val)
|
||||
else:
|
||||
color = 'green'
|
||||
tone = maxtone * val
|
||||
return '\cellcolor{' + color + f'!{int(tone)}' + '}'
|
|
@ -1,66 +0,0 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
||||
from sklearn.metrics import make_scorer, f1_score
|
||||
from sklearn.svm import LinearSVC
|
||||
|
||||
from quapy.data.base import LabelledCollection
|
||||
from sklearn.model_selection import cross_val_score, GridSearchCV
|
||||
|
||||
from os.path import join
|
||||
|
||||
"""
|
||||
In this experiment, I simply try to understand whether the learning task can be learned or not.
|
||||
The problem is that we are quantifying the categories based on the alphabetical order (of what?).
|
||||
"""
|
||||
|
||||
def load_txt_sample(path, parse_columns, verbose=False, max_lines=None):
|
||||
if verbose:
|
||||
print(f'loading {path}...', end='')
|
||||
df = pd.read_csv(path, sep='\t')
|
||||
if verbose:
|
||||
print('[done]')
|
||||
X = df['text'].values
|
||||
y = df['continent'].values
|
||||
|
||||
if parse_columns:
|
||||
rank = df['rank'].values
|
||||
scores = df['score'].values
|
||||
order = np.argsort(rank)
|
||||
X = X[order]
|
||||
y = y[order]
|
||||
rank = rank[order]
|
||||
scores = scores[order]
|
||||
|
||||
if max_lines is not None:
|
||||
X = X[:max_lines]
|
||||
y = y[:max_lines]
|
||||
|
||||
return X, y
|
||||
|
||||
data_path = './50_50_split_trec'
|
||||
train_path = join(data_path, 'train_50_50_continent.txt')
|
||||
|
||||
tfidf = TfidfVectorizer(sublinear_tf=True, min_df=10)
|
||||
data = LabelledCollection.load(train_path, loader_func=load_txt_sample, verbose=True, parse_columns=False)
|
||||
data = data.sampling(20000)
|
||||
train, test = data.split_stratified()
|
||||
train.instances = tfidf.fit_transform(train.instances)
|
||||
test.instances = tfidf.transform(test.instances)
|
||||
|
||||
# svm = LinearSVC()
|
||||
# cls = GridSearchCV(svm, param_grid={'C':np.logspace(-3,3,7), 'class_weight':['balanced', None]})
|
||||
cls = LogisticRegression()
|
||||
cls.fit(*train.Xy)
|
||||
|
||||
# score = cross_val_score(LogisticRegressionCV(), *data.Xy, scoring=make_scorer(f1_score, average='macro'), n_jobs=-1, cv=5)
|
||||
# print(score)
|
||||
# print(np.mean(score))
|
||||
|
||||
y_pred = cls.predict(test.instances)
|
||||
macrof1 = f1_score(y_true=test.labels, y_pred=y_pred, average='macro')
|
||||
microf1 = f1_score(y_true=test.labels, y_pred=y_pred, average='micro')
|
||||
|
||||
print('macro', macrof1)
|
||||
print('micro', microf1)
|
Loading…
Reference in New Issue