Merge pull request #42 from mirkobunse/devel
Fix PyPI: replace the direct extra dependency quapy[composable] with documentation on how to install through git
This commit is contained in:
commit
a271fe1231
|
@ -28,7 +28,8 @@ jobs:
|
|||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip setuptools wheel
|
||||
python -m pip install -e .[bayes,composable,tests]
|
||||
python -m pip install "qunfold @ git+https://github.com/mirkobunse/qunfold@v0.1.4"
|
||||
python -m pip install -e .[bayes,tests]
|
||||
- name: Test with unittest
|
||||
run: python -m unittest
|
||||
|
||||
|
@ -46,7 +47,8 @@ jobs:
|
|||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip setuptools wheel "jax[cpu]"
|
||||
python -m pip install -e .[composable,neural,docs]
|
||||
python -m pip install "qunfold @ git+https://github.com/mirkobunse/qunfold@v0.1.4"
|
||||
python -m pip install -e .[neural,docs]
|
||||
- name: Build documentation
|
||||
run: sphinx-build -M html docs/source docs/build
|
||||
- name: Publish documentation
|
||||
|
|
|
@ -1,108 +0,0 @@
|
|||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from os.path import join
|
||||
import quapy as qp
|
||||
from quapy.protocol import UPP
|
||||
from quapy.method.aggregative import KDEyML
|
||||
|
||||
DEBUG = True
|
||||
|
||||
qp.environ["SAMPLE_SIZE"] = 100 if DEBUG else 500
|
||||
val_repeats = 100 if DEBUG else 500
|
||||
test_repeats = 100 if DEBUG else 500
|
||||
if DEBUG:
|
||||
qp.environ["DEFAULT_CLS"] = LogisticRegression()
|
||||
|
||||
test_results = {}
|
||||
val_choice = {}
|
||||
|
||||
bandwidth_range = np.linspace(0.01, 0.20, 20)
|
||||
if DEBUG:
|
||||
bandwidth_range = np.linspace(0.01, 0.20, 10)
|
||||
|
||||
def datasets():
|
||||
for dataset_name in qp.datasets.UCI_MULTICLASS_DATASETS[:4]:
|
||||
dataset = qp.datasets.fetch_UCIMulticlassDataset(dataset_name)
|
||||
if DEBUG:
|
||||
dataset = dataset.reduce(random_state=0)
|
||||
yield dataset
|
||||
|
||||
|
||||
def experiment_dataset(dataset):
|
||||
train, test = dataset.train_test
|
||||
test_gen = UPP(test, repeats=test_repeats)
|
||||
|
||||
# bandwidth chosen during model selection in validation
|
||||
train_tr, train_va = train.split_stratified(random_state=0)
|
||||
kdey = KDEyML(random_state=0)
|
||||
modsel = qp.model_selection.GridSearchQ(
|
||||
model=kdey,
|
||||
param_grid={'bandwidth': bandwidth_range},
|
||||
protocol=UPP(train_va, repeats=val_repeats),
|
||||
refit=False,
|
||||
n_jobs=-1
|
||||
).fit(train_tr)
|
||||
chosen_bandwidth = modsel.best_params_['bandwidth']
|
||||
modsel_choice = float(chosen_bandwidth)
|
||||
|
||||
# results in test
|
||||
print(f"testing KDEy in {dataset.name}")
|
||||
dataset_results = []
|
||||
for b in bandwidth_range:
|
||||
kdey = KDEyML(bandwidth=b, random_state=0)
|
||||
kdey.fit(train)
|
||||
|
||||
mae = qp.evaluation.evaluate(kdey, protocol=test_gen, error_metric='mae', verbose=True)
|
||||
print(f'bandwidth={b}: {mae:.5f}')
|
||||
dataset_results.append((float(b), float(mae)))
|
||||
|
||||
return modsel_choice, dataset_results
|
||||
|
||||
def plot_bandwidth(val_choice, test_results):
|
||||
for dataset_name in val_choice.keys():
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
bandwidths, results = zip(*test_results[dataset_name])
|
||||
|
||||
# Crear la gráfica
|
||||
plt.figure(figsize=(8, 6))
|
||||
|
||||
# Graficar los puntos de datos
|
||||
plt.plot(bandwidths, results, marker='o')
|
||||
|
||||
# Agregar la línea vertical en bandwidth_chosen
|
||||
plt.axvline(x=val_choice[dataset_name], color='r', linestyle='--', label=f'Bandwidth elegido: {val_choice[dataset_name]}')
|
||||
|
||||
# Agregar etiquetas y título
|
||||
plt.xlabel('Bandwidth')
|
||||
plt.ylabel('Resultado')
|
||||
plt.title('Gráfica de Bandwidth vs Resultado')
|
||||
|
||||
# Mostrar la leyenda
|
||||
plt.legend()
|
||||
|
||||
# Mostrar la gráfica
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
|
||||
for dataset in datasets():
|
||||
if DEBUG:
|
||||
result_path = f'./results/debug/{dataset.name}.pkl'
|
||||
else:
|
||||
result_path = f'./results/{dataset.name}.pkl'
|
||||
|
||||
modsel_choice, dataset_results = qp.util.pickled_resource(result_path, experiment_dataset, dataset)
|
||||
val_choice[dataset.name] = modsel_choice
|
||||
test_results[dataset.name] = dataset_results
|
||||
|
||||
print(f'Dataset = {dataset.name}')
|
||||
print(modsel_choice)
|
||||
print(dataset_results)
|
||||
|
||||
plot_bandwidth(val_choice, test_results)
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -447,7 +447,7 @@ The [](quapy.method.composable) module allows the composition of quantification
|
|||
```sh
|
||||
pip install --upgrade pip setuptools wheel
|
||||
pip install "jax[cpu]"
|
||||
pip install quapy[composable]
|
||||
pip install "qunfold @ git+https://github.com/mirkobunse/qunfold@v0.1.4"
|
||||
```
|
||||
|
||||
### Basics
|
||||
|
|
|
@ -2,6 +2,13 @@
|
|||
This example illustrates the composition of quantification methods from
|
||||
arbitrary loss functions and feature transformations. It will extend the basic
|
||||
example on the usage of quapy with this composition.
|
||||
|
||||
This example requires the installation of qunfold, the back-end of QuaPy's
|
||||
composition module:
|
||||
|
||||
pip install --upgrade pip setuptools wheel
|
||||
pip install "jax[cpu]"
|
||||
pip install "qunfold @ git+https://github.com/mirkobunse/qunfold@v0.1.4"
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
|
|
@ -1,45 +1,57 @@
|
|||
"""This module allows the composition of quantification methods from loss functions and feature transformations. This functionality is realized through an integration of the qunfold package: https://github.com/mirkobunse/qunfold."""
|
||||
|
||||
import qunfold
|
||||
from qunfold.quapy import QuaPyWrapper
|
||||
from qunfold.sklearn import CVClassifier
|
||||
from qunfold import (
|
||||
LeastSquaresLoss, # losses
|
||||
BlobelLoss,
|
||||
EnergyLoss,
|
||||
HellingerSurrogateLoss,
|
||||
CombinedLoss,
|
||||
TikhonovRegularization,
|
||||
TikhonovRegularized,
|
||||
ClassTransformer, # transformers
|
||||
HistogramTransformer,
|
||||
DistanceTransformer,
|
||||
KernelTransformer,
|
||||
EnergyKernelTransformer,
|
||||
LaplacianKernelTransformer,
|
||||
GaussianKernelTransformer,
|
||||
GaussianRFFKernelTransformer,
|
||||
)
|
||||
_import_error_message = """qunfold, the back-end of quapy.method.composable, is not properly installed.
|
||||
|
||||
__all__ = [ # control public members, e.g., for auto-documentation in sphinx; omit QuaPyWrapper
|
||||
"ComposableQuantifier",
|
||||
"CVClassifier",
|
||||
"LeastSquaresLoss",
|
||||
"BlobelLoss",
|
||||
"EnergyLoss",
|
||||
"HellingerSurrogateLoss",
|
||||
"CombinedLoss",
|
||||
"TikhonovRegularization",
|
||||
"TikhonovRegularized",
|
||||
"ClassTransformer",
|
||||
"HistogramTransformer",
|
||||
"DistanceTransformer",
|
||||
"KernelTransformer",
|
||||
"EnergyKernelTransformer",
|
||||
"LaplacianKernelTransformer",
|
||||
"GaussianKernelTransformer",
|
||||
"GaussianRFFKernelTransformer",
|
||||
]
|
||||
To fix this error, call:
|
||||
|
||||
pip install --upgrade pip setuptools wheel
|
||||
pip install "jax[cpu]"
|
||||
pip install "qunfold @ git+https://github.com/mirkobunse/qunfold@v0.1.4"
|
||||
"""
|
||||
|
||||
try:
|
||||
import qunfold
|
||||
from qunfold.quapy import QuaPyWrapper
|
||||
from qunfold.sklearn import CVClassifier
|
||||
from qunfold import (
|
||||
LeastSquaresLoss, # losses
|
||||
BlobelLoss,
|
||||
EnergyLoss,
|
||||
HellingerSurrogateLoss,
|
||||
CombinedLoss,
|
||||
TikhonovRegularization,
|
||||
TikhonovRegularized,
|
||||
ClassTransformer, # transformers
|
||||
HistogramTransformer,
|
||||
DistanceTransformer,
|
||||
KernelTransformer,
|
||||
EnergyKernelTransformer,
|
||||
LaplacianKernelTransformer,
|
||||
GaussianKernelTransformer,
|
||||
GaussianRFFKernelTransformer,
|
||||
)
|
||||
|
||||
__all__ = [ # control public members, e.g., for auto-documentation in sphinx; omit QuaPyWrapper
|
||||
"ComposableQuantifier",
|
||||
"CVClassifier",
|
||||
"LeastSquaresLoss",
|
||||
"BlobelLoss",
|
||||
"EnergyLoss",
|
||||
"HellingerSurrogateLoss",
|
||||
"CombinedLoss",
|
||||
"TikhonovRegularization",
|
||||
"TikhonovRegularized",
|
||||
"ClassTransformer",
|
||||
"HistogramTransformer",
|
||||
"DistanceTransformer",
|
||||
"KernelTransformer",
|
||||
"EnergyKernelTransformer",
|
||||
"LaplacianKernelTransformer",
|
||||
"GaussianKernelTransformer",
|
||||
"GaussianRFFKernelTransformer",
|
||||
]
|
||||
except ImportError as e:
|
||||
raise ImportError(_import_error_message) from e
|
||||
|
||||
def ComposableQuantifier(loss, transformer, **kwargs):
|
||||
"""A generic quantification / unfolding method that solves a linear system of equations.
|
||||
|
|
Loading…
Reference in New Issue