simplfiying the minimal working exaple in the README
This commit is contained in:
parent
365a9e626c
commit
a6ff00f96b
|
@ -1,9 +1,5 @@
|
|||
Change Log 0.1.9
|
||||
----------------
|
||||
- [TODO] add LeQua2024 and normalized match distance to qp.error
|
||||
- [TODO] add CDE-iteration and Bayes-CDE methods
|
||||
- [TODO] add Friedman's method and DeBias
|
||||
- [TODO] check ignore warning stuff (check https://docs.python.org/3/library/warnings.html#temporarily-suppressing-warnings)
|
||||
|
||||
- Added LeQua 2024 datasets and normalized match distance to qp.error
|
||||
|
||||
|
|
13
README.md
13
README.md
|
@ -45,19 +45,18 @@ of the test set.
|
|||
|
||||
```python
|
||||
import quapy as qp
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
dataset = qp.datasets.fetch_twitter('semeval16')
|
||||
dataset = qp.datasets.fetch_UCIBinaryDataset("yeast")
|
||||
training, test = dataset.train_test
|
||||
|
||||
# create an "Adjusted Classify & Count" quantifier
|
||||
model = qp.method.aggregative.ACC(LogisticRegression())
|
||||
model.fit(dataset.training)
|
||||
model = qp.method.aggregative.ACC()
|
||||
model.fit(training)
|
||||
|
||||
estim_prevalence = model.quantify(dataset.test.instances)
|
||||
true_prevalence = dataset.test.prevalence()
|
||||
estim_prevalence = model.quantify(test.X)
|
||||
true_prevalence = test.prevalence()
|
||||
|
||||
error = qp.error.mae(true_prevalence, estim_prevalence)
|
||||
|
||||
print(f'Mean Absolute Error (MAE)={error:.3f}')
|
||||
```
|
||||
|
||||
|
|
6
TODO.txt
6
TODO.txt
|
@ -0,0 +1,6 @@
|
|||
- [TODO] add ensemble methods SC-MQ, MC-SQ, MC-MQ
|
||||
- [TODO] add HistNetQ
|
||||
- [TODO] add CDE-iteration and Bayes-CDE methods
|
||||
- [TODO] add Friedman's method and DeBias
|
||||
- [TODO] check ignore warning stuff
|
||||
check https://docs.python.org/3/library/warnings.html#temporarily-suppressing-warnings
|
|
@ -33,9 +33,9 @@ quantifier = KDEyML(classifier=LogisticRegression())
|
|||
|
||||
# model selection
|
||||
param_grid = {
|
||||
'classifier__C': np.logspace(-3, 3, 7), # classifier-dependent: inverse of regularization strength
|
||||
'classifier__class_weight': ['balanced', None], # classifier-dependent: weights of each class
|
||||
'bandwidth': np.linspace(0.01, 0.2, 20) # quantifier-dependent: bandwidth of the kernel
|
||||
'classifier__C': np.logspace(-3, 3, 7), # classifier-dependent: inverse of regularization strength
|
||||
'classifier__class_weight': ['balanced', None], # classifier-dependent: weights of each class
|
||||
'bandwidth': np.linspace(0.01, 0.2, 20) # quantifier-dependent: bandwidth of the kernel
|
||||
}
|
||||
model_selection = GridSearchQ(quantifier, param_grid, protocol=val_generator, error='mrae', refit=False, verbose=True)
|
||||
quantifier = model_selection.fit(training)
|
||||
|
|
Loading…
Reference in New Issue