step rate adaptation

This commit is contained in:
Alejandro Moreo Fernandez 2025-11-14 16:09:34 +01:00
parent 3dba708fe4
commit ccb634fae5
2 changed files with 33 additions and 18 deletions

View File

@ -11,7 +11,7 @@ from tqdm import tqdm
from scipy.stats import dirichlet
def bayesian(kdes, data, probabilistic_classifier, init=None, MAX_ITER=100_000, warmup=3_000):
def bayesian(kdey, data, probabilistic_classifier, init=None, MAX_ITER=100_000, warmup=3_000):
"""
Bayes:
P(prev|data) = P(data|prev) P(prev) / P(data)
@ -26,6 +26,7 @@ def bayesian(kdes, data, probabilistic_classifier, init=None, MAX_ITER=100_000,
return np.exp(kde.score_samples(X))
X = probabilistic_classifier.predict_proba(data)
kdes = kdey.mix_densities
test_densities = np.asarray([pdf(kde_i, X) for kde_i in kdes])
def log_likelihood(prev, epsilon=1e-10):
@ -44,9 +45,9 @@ def bayesian(kdes, data, probabilistic_classifier, init=None, MAX_ITER=100_000,
def log_prior(prev):
return 0
def sample_neighbour(prev):
dir_noise = np.random.normal(scale=0.05, size=len(prev))
# neighbour = F.normalize_prevalence(prev + dir_noise, method='clip')
def sample_neighbour(prev, step_size=0.05):
# random-walk Metropolis-Hastings
dir_noise = np.random.normal(scale=step_size, size=len(prev))
neighbour = F.normalize_prevalence(prev + dir_noise, method='mapsimplex')
return neighbour
@ -54,22 +55,33 @@ def bayesian(kdes, data, probabilistic_classifier, init=None, MAX_ITER=100_000,
current_prev = F.uniform_prevalence(n_classes) if init is None else init
current_likelihood = log_likelihood(current_prev) + log_prior(current_prev)
# Metropolis-Hastings
# Metropolis-Hastings with adaptive rate
step_size = 0.05
target_acceptance = 0.3
adapt_rate = 0.01
acceptance_history = []
samples = []
for _ in tqdm(range(MAX_ITER), total=MAX_ITER):
proposed_prev = sample_neighbour(current_prev)
for i in tqdm(range(MAX_ITER), total=MAX_ITER):
proposed_prev = sample_neighbour(current_prev, step_size)
# probability of acceptance
proposed_likelihood = log_likelihood(proposed_prev) + log_prior(proposed_prev)
acceptance = proposed_likelihood - current_likelihood
# decide acceptance
if np.log(np.random.rand()) < acceptance:
# accept
accepted = np.log(np.random.rand()) < acceptance
if accepted:
current_prev = proposed_prev
current_likelihood = proposed_likelihood
samples.append(current_prev)
acceptance_history.append(1. if accepted else 0.)
if i < warmup and i%10==0 and len(acceptance_history)>=100:
recent_accept_rate = np.mean(acceptance_history[-100:])
# print(f'{i=} recent_accept_rate={recent_accept_rate:.4f} (current step_size={step_size:.4f})')
step_size *= np.exp(adapt_rate * (recent_accept_rate - target_acceptance))
# remove "warmup" initial iterations
samples = np.asarray(samples[warmup:])
@ -81,31 +93,34 @@ if __name__ == '__main__':
cls = LogisticRegression()
kdey = KDEyML(cls)
train, test = qp.datasets.fetch_UCIMulticlassDataset('dry-bean', standardize=True).train_test
train, test = qp.datasets.fetch_UCIMulticlassDataset('academic-success', standardize=True).train_test
with qp.util.temp_seed(2):
print('fitting KDEy')
kdey.fit(*train.Xy)
# shifted = test.sampling(500, *[0.7, 0.1, 0.2])
shifted = test.sampling(500, *test.prevalence()[::-1])
# shifted = test.sampling(500, *test.prevalence()[::-1])
shifted = test.sampling(500, *F.uniform_prevalence_sampling(train.n_classes))
prev_hat = kdey.predict(shifted.X)
mae = qp.error.mae(shifted.prevalence(), prev_hat)
print(f'true_prev={strprev(shifted.prevalence())}, prev_hat={strprev(prev_hat)}, {mae=:.4f}')
print(f'true_prev={strprev(shifted.prevalence())}')
print(f'prev_hat={strprev(prev_hat)}, {mae=:.4f}')
kdes = kdey.mix_densities
h = kdey.classifier
samples = bayesian(kdes, shifted.X, h, init=None, MAX_ITER=5_000, warmup=1_000)
samples = bayesian(kdey, shifted.X, h, init=None, MAX_ITER=5_000, warmup=3_000)
print(f'mean posterior {strprev(samples.mean(axis=0))}')
conf_interval = ConfidenceIntervals(samples, confidence_level=0.95)
print()
mae = qp.error.mae(shifted.prevalence(), conf_interval.point_estimate())
print(f'mean posterior {strprev(samples.mean(axis=0))}, {mae=:.4f}')
print(f'CI={conf_interval}')
print(f'\tcontains true={conf_interval.coverage(true_value=shifted.prevalence())==1}')
print(f'\tamplitude={conf_interval.montecarlo_proportion(50_000)*100.:.20f}%')
if train.n_classes == 3:
plot_prev_points(samples, true_prev=shifted.prevalence(), point_estim=prev_hat, train_prev=train.prevalence())
# plot_prev_points_matplot(samples)
# report = qp.evaluation.evaluation_report(kdey, protocol=UPP(test), verbose=True)
# print(report.mean(numeric_only=True))

View File

@ -27,7 +27,7 @@ def plot_prev_points(prevs, true_prev, point_estim, train_prev):
# Plot
fig, ax = plt.subplots(figsize=(6, 6))
ax.scatter(*cartesian(prevs), s=50, alpha=0.05, edgecolors='none', label='samples')
ax.scatter(*cartesian(prevs), s=10, alpha=0.5, edgecolors='none', label='samples')
ax.scatter(*cartesian(prevs.mean(axis=0)), s=10, alpha=1, label='sample-mean', edgecolors='black')
ax.scatter(*cartesian(true_prev), s=10, alpha=1, label='true-prev', edgecolors='black')
ax.scatter(*cartesian(point_estim), s=10, alpha=1, label='KDEy-estim', edgecolors='black')