adding experiments for svmmae and svmmrae
This commit is contained in:
parent
5e64d2588a
commit
d510630d3b
|
@ -19,20 +19,19 @@ def quantification_models():
|
|||
def newLR():
|
||||
return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1)
|
||||
__C_range = np.logspace(-4, 5, 10)
|
||||
#lr_params = {'C': __C_range, 'class_weight': [None, 'balanced']}
|
||||
lr_params = {'C': __C_range, 'class_weight': [None, 'balanced']}
|
||||
svmperf_params = {'C': __C_range}
|
||||
lr_params = {'C': [1,10]}
|
||||
yield 'cc', qp.method.aggregative.CC(newLR()), lr_params
|
||||
#yield 'acc', qp.method.aggregative.ACC(newLR()), lr_params
|
||||
#yield 'pcc', qp.method.aggregative.PCC(newLR()), lr_params
|
||||
#yield 'pacc', qp.method.aggregative.PACC(newLR()), lr_params
|
||||
#yield 'sld', qp.method.aggregative.EMQ(newLR()), lr_params
|
||||
yield 'acc', qp.method.aggregative.ACC(newLR()), lr_params
|
||||
yield 'pcc', qp.method.aggregative.PCC(newLR()), lr_params
|
||||
yield 'pacc', qp.method.aggregative.PACC(newLR()), lr_params
|
||||
yield 'sld', qp.method.aggregative.EMQ(newLR()), lr_params
|
||||
#yield 'svmq', OneVsAll(qp.method.aggregative.SVMQ(settings.SVMPERF_HOME)), svmperf_params
|
||||
#yield 'svmkld', OneVsAll(qp.method.aggregative.SVMKLD(settings.SVMPERF_HOME)), svmperf_params
|
||||
#yield 'svmnkld', OneVsAll(qp.method.aggregative.SVMNKLD(settings.SVMPERF_HOME)), svmperf_params
|
||||
yield 'svmmae', OneVsAll(qp.method.aggregative.SVMAE(settings.SVMPERF_HOME)), svmperf_params
|
||||
yield 'svmmrae', OneVsAll(qp.method.aggregative.SVMRAE(settings.SVMPERF_HOME)), svmperf_params
|
||||
|
||||
# 'svmmae': lambda learner: OneVsAllELM(settings.SVM_PERF_HOME, loss='mae'),
|
||||
# 'svmmrae': lambda learner: OneVsAllELM(settings.SVM_PERF_HOME, loss='mrae'),
|
||||
# 'mlpe': lambda learner: MaximumLikelihoodPrevalenceEstimation(),
|
||||
|
||||
|
||||
|
@ -81,9 +80,12 @@ def run(experiment):
|
|||
if is_already_computed(dataset_name, model_name, optim_loss=optim_loss):
|
||||
print(f'result for dataset={dataset_name} model={model_name} loss={optim_loss} already computed.')
|
||||
return
|
||||
elif (optim_loss=='mae' and model_name=='svmmrae') or (optim_loss=='mrae' and model_name=='svmmae'):
|
||||
print(f'skipping model={model_name} for optim_loss={optim_loss}')
|
||||
return
|
||||
else:
|
||||
print(f'running dataset={dataset_name} model={model_name} loss={optim_loss}')
|
||||
|
||||
|
||||
benchmark_devel = qp.datasets.fetch_twitter(dataset_name, for_model_selection=True, min_df=5, pickle=True)
|
||||
benchmark_devel.stats()
|
||||
|
||||
|
|
Loading…
Reference in New Issue