Instruct the user how to install qunfold in the case of an unsuccessful import
This commit is contained in:
parent
9be729386a
commit
db8a870495
|
@ -1,45 +1,57 @@
|
|||
"""This module allows the composition of quantification methods from loss functions and feature transformations. This functionality is realized through an integration of the qunfold package: https://github.com/mirkobunse/qunfold."""
|
||||
|
||||
import qunfold
|
||||
from qunfold.quapy import QuaPyWrapper
|
||||
from qunfold.sklearn import CVClassifier
|
||||
from qunfold import (
|
||||
LeastSquaresLoss, # losses
|
||||
BlobelLoss,
|
||||
EnergyLoss,
|
||||
HellingerSurrogateLoss,
|
||||
CombinedLoss,
|
||||
TikhonovRegularization,
|
||||
TikhonovRegularized,
|
||||
ClassTransformer, # transformers
|
||||
HistogramTransformer,
|
||||
DistanceTransformer,
|
||||
KernelTransformer,
|
||||
EnergyKernelTransformer,
|
||||
LaplacianKernelTransformer,
|
||||
GaussianKernelTransformer,
|
||||
GaussianRFFKernelTransformer,
|
||||
)
|
||||
_import_error_message = """qunfold, the back-end of quapy.method.composable, is not properly installed.
|
||||
|
||||
__all__ = [ # control public members, e.g., for auto-documentation in sphinx; omit QuaPyWrapper
|
||||
"ComposableQuantifier",
|
||||
"CVClassifier",
|
||||
"LeastSquaresLoss",
|
||||
"BlobelLoss",
|
||||
"EnergyLoss",
|
||||
"HellingerSurrogateLoss",
|
||||
"CombinedLoss",
|
||||
"TikhonovRegularization",
|
||||
"TikhonovRegularized",
|
||||
"ClassTransformer",
|
||||
"HistogramTransformer",
|
||||
"DistanceTransformer",
|
||||
"KernelTransformer",
|
||||
"EnergyKernelTransformer",
|
||||
"LaplacianKernelTransformer",
|
||||
"GaussianKernelTransformer",
|
||||
"GaussianRFFKernelTransformer",
|
||||
]
|
||||
To fix this error, call:
|
||||
|
||||
pip install --upgrade pip setuptools wheel
|
||||
pip install "jax[cpu]"
|
||||
pip install "qunfold @ git+https://github.com/mirkobunse/qunfold@v0.1.4"
|
||||
"""
|
||||
|
||||
try:
|
||||
import qunfold
|
||||
from qunfold.quapy import QuaPyWrapper
|
||||
from qunfold.sklearn import CVClassifier
|
||||
from qunfold import (
|
||||
LeastSquaresLoss, # losses
|
||||
BlobelLoss,
|
||||
EnergyLoss,
|
||||
HellingerSurrogateLoss,
|
||||
CombinedLoss,
|
||||
TikhonovRegularization,
|
||||
TikhonovRegularized,
|
||||
ClassTransformer, # transformers
|
||||
HistogramTransformer,
|
||||
DistanceTransformer,
|
||||
KernelTransformer,
|
||||
EnergyKernelTransformer,
|
||||
LaplacianKernelTransformer,
|
||||
GaussianKernelTransformer,
|
||||
GaussianRFFKernelTransformer,
|
||||
)
|
||||
|
||||
__all__ = [ # control public members, e.g., for auto-documentation in sphinx; omit QuaPyWrapper
|
||||
"ComposableQuantifier",
|
||||
"CVClassifier",
|
||||
"LeastSquaresLoss",
|
||||
"BlobelLoss",
|
||||
"EnergyLoss",
|
||||
"HellingerSurrogateLoss",
|
||||
"CombinedLoss",
|
||||
"TikhonovRegularization",
|
||||
"TikhonovRegularized",
|
||||
"ClassTransformer",
|
||||
"HistogramTransformer",
|
||||
"DistanceTransformer",
|
||||
"KernelTransformer",
|
||||
"EnergyKernelTransformer",
|
||||
"LaplacianKernelTransformer",
|
||||
"GaussianKernelTransformer",
|
||||
"GaussianRFFKernelTransformer",
|
||||
]
|
||||
except ImportError as e:
|
||||
raise ImportError(_import_error_message) from e
|
||||
|
||||
def ComposableQuantifier(loss, transformer, **kwargs):
|
||||
"""A generic quantification / unfolding method that solves a linear system of equations.
|
||||
|
|
Loading…
Reference in New Issue