bugfix in NeuralClassifierTrainer; it was only configured to work well in binary problems
This commit is contained in:
parent
8e14bbc527
commit
e40c409609
|
@ -42,7 +42,7 @@ class NeuralClassifierTrainer:
|
|||
batch_size=64,
|
||||
batch_size_test=512,
|
||||
padding_length=300,
|
||||
device='cpu',
|
||||
device='cuda',
|
||||
checkpointpath='../checkpoint/classifier_net.dat'):
|
||||
|
||||
super().__init__()
|
||||
|
@ -62,7 +62,6 @@ class NeuralClassifierTrainer:
|
|||
}
|
||||
self.learner_hyperparams = self.net.get_params()
|
||||
self.checkpointpath = checkpointpath
|
||||
self.classes_ = np.asarray([0, 1])
|
||||
|
||||
print(f'[NeuralNetwork running on {device}]')
|
||||
os.makedirs(Path(checkpointpath).parent, exist_ok=True)
|
||||
|
@ -174,6 +173,7 @@ class NeuralClassifierTrainer:
|
|||
:return:
|
||||
"""
|
||||
train, val = LabelledCollection(instances, labels).split_stratified(1-val_split)
|
||||
self.classes_ = train.classes_
|
||||
opt = self.trainer_hyperparams
|
||||
checkpoint = self.checkpointpath
|
||||
self.reset_net_params(self.vocab_size, train.n_classes)
|
||||
|
|
|
@ -184,7 +184,7 @@ class IndexTransformer:
|
|||
|
||||
def _index(self, documents):
|
||||
vocab = self.vocabulary_.copy()
|
||||
return [[vocab.prevalence(word, self.unk) for word in self.analyzer(doc)] for doc in tqdm(documents, 'indexing')]
|
||||
return [[vocab.get(word, self.unk) for word in self.analyzer(doc)] for doc in tqdm(documents, 'indexing')]
|
||||
|
||||
def fit_transform(self, X, n_jobs=-1):
|
||||
"""
|
||||
|
|
|
@ -282,6 +282,7 @@ class ACC(AggregativeQuantifier):
|
|||
"""
|
||||
if val_split is None:
|
||||
val_split = self.val_split
|
||||
classes = data.classes_
|
||||
if isinstance(val_split, int):
|
||||
assert fit_learner == True, \
|
||||
'the parameters for the adjustment cannot be estimated with kFCV with fit_learner=False'
|
||||
|
@ -300,6 +301,7 @@ class ACC(AggregativeQuantifier):
|
|||
y = np.concatenate(y)
|
||||
y_ = np.concatenate(y_)
|
||||
class_count = data.counts()
|
||||
classes = data.classes_
|
||||
|
||||
# fit the learner on all data
|
||||
self.learner, _ = _training_helper(self.learner, data, fit_learner, val_split=None)
|
||||
|
@ -308,10 +310,11 @@ class ACC(AggregativeQuantifier):
|
|||
self.learner, val_data = _training_helper(self.learner, data, fit_learner, val_split=val_split)
|
||||
y_ = self.learner.predict(val_data.instances)
|
||||
y = val_data.labels
|
||||
classes = val_data.classes_
|
||||
|
||||
self.cc = CC(self.learner)
|
||||
|
||||
self.Pte_cond_estim_ = self.getPteCondEstim(data.classes_, y, y_)
|
||||
self.Pte_cond_estim_ = self.getPteCondEstim(classes, y, y_)
|
||||
|
||||
return self
|
||||
|
||||
|
|
|
@ -82,6 +82,7 @@ class QuaNetTrainer(BaseQuantifier):
|
|||
assert hasattr(learner, 'predict_proba'), \
|
||||
f'the learner {learner.__class__.__name__} does not seem to be able to produce posterior probabilities ' \
|
||||
f'since it does not implement the method "predict_proba"'
|
||||
assert sample_size is not None, 'sample_size cannot be None'
|
||||
self.learner = learner
|
||||
self.sample_size = sample_size
|
||||
self.n_epochs = n_epochs
|
||||
|
|
Loading…
Reference in New Issue