fixing dataset loading

This commit is contained in:
Alejandro Moreo Fernandez 2020-12-03 16:36:54 +01:00
parent b6820e8dba
commit e81009e665
3 changed files with 10 additions and 10 deletions

View File

@ -1,4 +1,5 @@
from .base import *
from . import base
from . import reader
from .reader import *
from . import preprocessing

View File

@ -1,6 +1,5 @@
import numpy as np
from scipy.sparse import issparse, dok_matrix
from sklearn.feature_extraction.text import TfidfVectorizer
from scipy.sparse import issparse
from sklearn.model_selection import train_test_split
from quapy.functional import artificial_prevalence_sampling
from scipy.sparse import vstack

View File

@ -1,7 +1,7 @@
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from dataset.base import Dataset
from scipy.sparse import spmatrix
import numpy as np
from utils.util import parallelize
from .base import LabelledCollection
@ -17,8 +17,8 @@ def text2tfidf(dataset:Dataset, min_df=3, sublinear_tf=True, inplace=False, **kw
:return: a new Dataset in csr_matrix format (if inplace=False) or a reference to the current Dataset (inplace=True)
where the instances are stored in a csr_matrix of real-valued tfidf scores
"""
__check_type(dataset.training.instances, list, str)
__check_type(dataset.test.instances, list, str)
__check_type(dataset.training.instances, np.ndarray, str)
__check_type(dataset.test.instances, np.ndarray, str)
vectorizer = TfidfVectorizer(min_df=min_df, sublinear_tf=sublinear_tf, **kwargs)
training_documents = vectorizer.fit_transform(dataset.training.instances)
@ -45,8 +45,8 @@ def reduce_columns(dataset:Dataset, min_df=5, inplace=False):
:return: a new Dataset (if inplace=False) or a reference to the current Dataset (inplace=True)
where the dimensions corresponding to infrequent instances have been removed
"""
__check_type(dataset.training, spmatrix)
__check_type(dataset.test, spmatrix)
__check_type(dataset.training.instances, spmatrix)
__check_type(dataset.test.instances, spmatrix)
assert dataset.training.instances.shape[1] == dataset.test.instances.shape[1], 'unaligned vector spaces'
def filter_by_occurrences(X, W):
@ -101,7 +101,7 @@ def __check_type(container, container_type=None, element_type=None):
assert isinstance(container, container_type), \
f'unexpected type of container (expected {container_type}, found {type(container)})'
if element_type:
assert isinstance(next(container), element_type), \
assert isinstance(container[0], element_type), \
f'unexpected type of element (expected {container_type}, found {type(container)})'