full example of training, model selection, and evaluation using the lequa2022 dataset with the new protocols
This commit is contained in:
parent
6cb9f388e0
commit
eafc82c96a
|
@ -5,6 +5,7 @@ from data.datasets import LEQUA2022_SAMPLE_SIZE, fetch_lequa2022
|
||||||
from evaluation import evaluation_report
|
from evaluation import evaluation_report
|
||||||
from method.aggregative import EMQ
|
from method.aggregative import EMQ
|
||||||
from model_selection import GridSearchQ
|
from model_selection import GridSearchQ
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
task = 'T1A'
|
task = 'T1A'
|
||||||
|
@ -21,6 +22,8 @@ model_selection = GridSearchQ(quantifier, param_grid, protocol=val_generator, n_
|
||||||
quantifier = model_selection.fit(training)
|
quantifier = model_selection.fit(training)
|
||||||
|
|
||||||
# evaluation
|
# evaluation
|
||||||
report = evaluation_report(quantifier, protocol=test_generator, error_metrics=['mae', 'mrae'], verbose=True)
|
report = evaluation_report(quantifier, protocol=test_generator, error_metrics=['mae', 'mrae', 'mkld'], verbose=True)
|
||||||
|
|
||||||
|
pd.set_option('display.max_columns', None)
|
||||||
|
pd.set_option('display.width', 1000)
|
||||||
print(report)
|
print(report)
|
||||||
|
|
Loading…
Reference in New Issue