clean
This commit is contained in:
parent
badf1ced62
commit
ed2025b6fa
|
@ -64,14 +64,6 @@ for quantifier in [CC, ACC, PCC, PACC, EMQ, HDy]:
|
|||
print(f'{quantifier_name} mae={mae:.3f} mrae={mrae:.3f}')
|
||||
|
||||
"""
|
||||
test:
|
||||
CC 0.1859 1.5406
|
||||
ACC 0.0453 0.2840
|
||||
PCC 0.1793 1.7187
|
||||
PACC 0.0287 0.1494
|
||||
EMQ 0.0225 0.1020
|
||||
HDy 0.0631 0.2307
|
||||
|
||||
validation
|
||||
CC 0.1862 1.9587
|
||||
ACC 0.0394 0.2669
|
||||
|
|
|
@ -59,14 +59,6 @@ for quantifier in [CC, ACC, PCC, PACC, EMQ, HDy]:
|
|||
print(f'{quantifier_name} mae={mae:.3f} mrae={mrae:.3f}')
|
||||
|
||||
"""
|
||||
test:
|
||||
CC 0.1859 1.5406
|
||||
ACC 0.0453 0.2840
|
||||
PCC 0.1793 1.7187
|
||||
PACC 0.0287 0.1494
|
||||
EMQ 0.0225 0.1020
|
||||
HDy 0.0631 0.2307
|
||||
|
||||
validation
|
||||
CC 0.1862 1.9587
|
||||
ACC 0.0394 0.2669
|
||||
|
|
|
@ -69,14 +69,6 @@ for quantifier in [EMQ]: # [CC, ACC, PCC, PACC, EMQ, HDy]:
|
|||
|
||||
|
||||
"""
|
||||
test:
|
||||
CC 0.1859 1.5406
|
||||
ACC 0.0453 0.2840
|
||||
PCC 0.1793 1.7187
|
||||
PACC 0.0287 0.1494
|
||||
EMQ 0.0225 0.1020
|
||||
HDy 0.0631 0.2307
|
||||
|
||||
validation
|
||||
CC 0.1862 1.9587
|
||||
ACC 0.0394 0.2669
|
||||
|
|
|
@ -1,66 +0,0 @@
|
|||
import pickle
|
||||
|
||||
import numpy as np
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from tqdm import tqdm
|
||||
|
||||
import quapy as qp
|
||||
from quapy.data import LabelledCollection
|
||||
from quapy.method.aggregative import *
|
||||
from data import load_binary_vectors
|
||||
import os
|
||||
|
||||
path_binary_vector = './data/T1A'
|
||||
result_path = os.path.join('results', 'T1A') # binary - vector
|
||||
os.makedirs(result_path, exist_ok=True)
|
||||
|
||||
train_file = os.path.join(path_binary_vector, 'public', 'training_vectors.txt')
|
||||
|
||||
train = LabelledCollection.load(train_file, load_binary_vectors)
|
||||
|
||||
print(train.classes_)
|
||||
print(len(train))
|
||||
print(train.prevalence())
|
||||
|
||||
tfidf = TfidfVectorizer(min_df=5)
|
||||
train.instances = tfidf.fit_transform(train.instances)
|
||||
|
||||
scores = {}
|
||||
for quantifier in [CC, ACC, PCC, PACC, EMQ, HDy]:
|
||||
classifier = CalibratedClassifierCV(LogisticRegression())
|
||||
model = quantifier(classifier).fit(train)
|
||||
|
||||
quantifier_name = model.__class__.__name__
|
||||
scores[quantifier_name]={}
|
||||
for sample_set, sample_size in [('validation', 1000)]:#, ('test', 5000)]:
|
||||
ae_errors, rae_errors = [], []
|
||||
for i in tqdm(range(sample_size), total=sample_size, desc=f'testing {quantifier_name} in {sample_set}'):
|
||||
test_file = os.path.join(path_binary_vector, 'documents', f'{sample_set}_{i}.txt')
|
||||
test = LabelledCollection.load(test_file, load_binary_raw_document, classes=train.classes_)
|
||||
test.instances = tfidf.transform(test.instances)
|
||||
qp.environ['SAMPLE_SIZE'] = len(test)
|
||||
prev_estim = model.quantify(test.instances)
|
||||
prev_true = test.prevalence()
|
||||
ae_errors.append(qp.error.mae(prev_true, prev_estim))
|
||||
rae_errors.append(qp.error.mrae(prev_true, prev_estim))
|
||||
|
||||
ae_errors = np.asarray(ae_errors)
|
||||
rae_errors = np.asarray(rae_errors)
|
||||
|
||||
mae = ae_errors.mean()
|
||||
mrae = rae_errors.mean()
|
||||
scores[quantifier_name][sample_set] = {'mae': mae, 'mrae': mrae}
|
||||
pickle.dump(ae_errors, open(os.path.join(result_path, f'{quantifier_name}.{sample_set}.ae.pickle'), 'wb'), pickle.HIGHEST_PROTOCOL)
|
||||
pickle.dump(rae_errors, open(os.path.join(result_path, f'{quantifier_name}.{sample_set}.rae.pickle'), 'wb'), pickle.HIGHEST_PROTOCOL)
|
||||
print(f'{quantifier_name} {sample_set} MAE={mae:.4f}')
|
||||
print(f'{quantifier_name} {sample_set} MRAE={mrae:.4f}')
|
||||
|
||||
for model in scores:
|
||||
for sample_set in ['validation']:#, 'test']:
|
||||
print(f'{model}\t{scores[model][sample_set]["mae"]:.4f}\t{scores[model][sample_set]["mrae"]:.4f}')
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -1,87 +0,0 @@
|
|||
import pickle
|
||||
|
||||
import numpy as np
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from tqdm import tqdm
|
||||
|
||||
import quapy as qp
|
||||
from quapy.data import LabelledCollection
|
||||
from quapy.method.aggregative import *
|
||||
from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE
|
||||
from data import load_multiclass_raw_document
|
||||
import os
|
||||
|
||||
path_multiclass_raw = 'multiclass_raw'
|
||||
result_path = os.path.join('results', 'multiclass_raw')
|
||||
os.makedirs(result_path, exist_ok=True)
|
||||
|
||||
train_file = os.path.join(path_multiclass_raw, 'documents', 'training.txt')
|
||||
|
||||
train = LabelledCollection.load(train_file, load_multiclass_raw_document)
|
||||
|
||||
print('classes', train.classes_)
|
||||
print('#classes', len(train.classes_))
|
||||
print('#docs', len(train))
|
||||
print('prevalence', train.prevalence())
|
||||
print('counts', train.counts())
|
||||
|
||||
tfidf = TfidfVectorizer(min_df=5)
|
||||
train.instances = tfidf.fit_transform(train.instances)
|
||||
print(train.instances.shape[1])
|
||||
|
||||
scores = {}
|
||||
for quantifier in [MLPE()]:#[CC, ACC, PCC, PACC, EMQ]:#, HDy]:
|
||||
# classifier = CalibratedClassifierCV(LogisticRegression())
|
||||
# model = quantifier(classifier).fit(train)
|
||||
model = quantifier.fit(train)
|
||||
print('model trained')
|
||||
|
||||
quantifier_name = model.__class__.__name__
|
||||
scores[quantifier_name]={}
|
||||
for sample_set, sample_size in [('validation', 1000), ('test', 5000)]:
|
||||
ae_errors, rae_errors = [], []
|
||||
for i in tqdm(range(sample_size), total=sample_size, desc=f'testing {quantifier_name} in {sample_set}'):
|
||||
test_file = os.path.join(path_multiclass_raw, 'documents', f'{sample_set}_{i}.txt')
|
||||
test = LabelledCollection.load(test_file, load_multiclass_raw_document, classes=train.classes_)
|
||||
test.instances = tfidf.transform(test.instances)
|
||||
qp.environ['SAMPLE_SIZE'] = len(test)
|
||||
prev_estim = model.quantify(test.instances)
|
||||
prev_true = test.prevalence()
|
||||
ae_errors.append(qp.error.mae(prev_true, prev_estim))
|
||||
rae_errors.append(qp.error.mrae(prev_true, prev_estim))
|
||||
|
||||
ae_errors = np.asarray(ae_errors)
|
||||
rae_errors = np.asarray(rae_errors)
|
||||
|
||||
mae = ae_errors.mean()
|
||||
mrae = rae_errors.mean()
|
||||
scores[quantifier_name][sample_set] = {'mae': mae, 'mrae': mrae}
|
||||
pickle.dump(ae_errors, open(os.path.join(result_path, f'{quantifier_name}.{sample_set}.ae.pickle'), 'wb'), pickle.HIGHEST_PROTOCOL)
|
||||
pickle.dump(rae_errors, open(os.path.join(result_path, f'{quantifier_name}.{sample_set}.rae.pickle'), 'wb'), pickle.HIGHEST_PROTOCOL)
|
||||
print(f'{quantifier_name} {sample_set} MAE={mae:.4f}')
|
||||
print(f'{quantifier_name} {sample_set} MRAE={mrae:.4f}')
|
||||
|
||||
for model in scores:
|
||||
for sample_set in ['validation', 'test']:
|
||||
print(f'{model}\t{sample_set}\t{scores[model][sample_set]["mae"]:.4f}\t{scores[model][sample_set]["mrae"]:.4f}')
|
||||
|
||||
|
||||
"""
|
||||
|
||||
MLPE validation 0.0423 4.8582
|
||||
CC validation 0.0308 2.9731
|
||||
PCC validation 0.0296 3.3926
|
||||
ACC validation 0.0328 3.1461
|
||||
PACC validation 0.0176 1.6449
|
||||
EMQ validation 0.0207 1.6960
|
||||
|
||||
MLPE test 0.0423 4.6083
|
||||
CC test 0.0308 2.9037
|
||||
PCC test 0.0296 3.2764
|
||||
ACC test 0.0328 3.0674
|
||||
PACC test 0.0174 1.5892
|
||||
EMQ test 0.0207 1.6059
|
||||
"""
|
||||
|
||||
|
Loading…
Reference in New Issue