with torch regressor
This commit is contained in:
parent
04c1f286ce
commit
f01d91b699
|
@ -0,0 +1,18 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class DistributionRegressor(nn.Module):
|
||||
|
||||
def __init__(self, n_classes, hidden_dim=64):
|
||||
super(DistributionRegressor, self).__init__()
|
||||
self.fc1 = nn.Linear(n_classes, hidden_dim)
|
||||
self.fc2 = nn.Linear(hidden_dim, n_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
x = F.softmax(x, dim=-1)
|
||||
return x
|
||||
|
|
@ -3,8 +3,7 @@ from time import time
|
|||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
import quapy as qp
|
||||
from KDEy.kdey_devel import KDEyMLauto, KDEyMLauto2, KDEyMLred
|
||||
from LocalStack.method import LocalStackingQuantification, LocalStackingQuantification2
|
||||
from LocalStack.method import *
|
||||
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
||||
from quapy.model_selection import GridSearchQ
|
||||
from quapy.protocol import UPP
|
||||
|
@ -21,8 +20,9 @@ METHODS = [
|
|||
]
|
||||
|
||||
TRANSDUCTIVE_METHODS = [
|
||||
('LSQ', LocalStackingQuantification(EMQ()), {}),
|
||||
('LSQ2', LocalStackingQuantification2(EMQ()), {})
|
||||
# ('LSQ', LocalStackingQuantification(EMQ()), {}),
|
||||
# ('LSQ2', LocalStackingQuantification2(EMQ()), {}),
|
||||
('LSQ-torch', LocalStackingQuantification3(EMQ()), {})
|
||||
]
|
||||
|
||||
def show_results(result_path):
|
||||
|
|
|
@ -1,23 +1,26 @@
|
|||
import numpy as np
|
||||
import torch
|
||||
|
||||
import quapy as qp
|
||||
from sklearn.multioutput import MultiOutputRegressor
|
||||
from sklearn.svm import SVR
|
||||
|
||||
from LocalStack._neural import DistributionRegressor
|
||||
from data import LabelledCollection
|
||||
from quapy.method.base import BaseQuantifier
|
||||
from quapy.method.aggregative import AggregativeSoftQuantifier
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class LocalStackingQuantification(BaseQuantifier):
|
||||
|
||||
def __init__(self, surrogate_quantifier, n_samples_gen=200, n_samples_sel=50, comparison_measure='ae', random_state=None):
|
||||
def __init__(self, surrogate_quantifier, n_samples_gen=200, n_samples_sel=50, comparison_measure='ae'):
|
||||
assert isinstance(surrogate_quantifier, AggregativeSoftQuantifier), \
|
||||
f'the surrogate quantifier must be of type {AggregativeSoftQuantifier.__class__.__name__}'
|
||||
self.surrogate_quantifier = surrogate_quantifier
|
||||
self.n_samples_gen = n_samples_gen
|
||||
self.n_samples_sel = n_samples_sel
|
||||
self.comparison_measure = qp.error.from_name(comparison_measure)
|
||||
self.random_state = random_state
|
||||
|
||||
def fit(self, data: LabelledCollection):
|
||||
train, val = data.split_stratified()
|
||||
|
@ -38,7 +41,7 @@ class LocalStackingQuantification(BaseQuantifier):
|
|||
samples_pred_prevs = []
|
||||
samples_distance = []
|
||||
for i in range(self.n_samples_gen):
|
||||
sample_i = self.val_data.sampling(test_size, *pred_prevs, random_state=self.random_state)
|
||||
sample_i = self.val_data.sampling(test_size, *pred_prevs)
|
||||
pred_prev_sample_i = self.surrogate_quantifier.quantify(sample_i.X)
|
||||
err_dist = self.comparison_measure(pred_prevs, pred_prev_sample_i)
|
||||
|
||||
|
@ -50,7 +53,7 @@ class LocalStackingQuantification(BaseQuantifier):
|
|||
samples_sel = np.asarray(samples)[ord_distances][:self.n_samples_sel]
|
||||
samples_pred_prevs_sel = np.asarray(samples_pred_prevs)[ord_distances][:self.n_samples_sel]
|
||||
|
||||
reg = MultiOutputRegressor(SVR())
|
||||
reg = MultiOutputRegressor(SVR(C=1000))
|
||||
reg_X = samples_pred_prevs_sel
|
||||
reg_y = [s.prevalence() for s in samples_sel]
|
||||
reg.fit(reg_X, reg_y)
|
||||
|
@ -69,14 +72,13 @@ class LocalStackingQuantification2(BaseQuantifier):
|
|||
predica en test, saca directamente samples de training con la prevalencia predicha en test
|
||||
"""
|
||||
|
||||
def __init__(self, surrogate_quantifier, n_samples_gen=200, n_samples_sel=50, comparison_measure='ae', random_state=None):
|
||||
def __init__(self, surrogate_quantifier, n_samples_gen=200, n_samples_sel=50, comparison_measure='ae'):
|
||||
assert isinstance(surrogate_quantifier, AggregativeSoftQuantifier), \
|
||||
f'the surrogate quantifier must be of type {AggregativeSoftQuantifier.__class__.__name__}'
|
||||
self.surrogate_quantifier = surrogate_quantifier
|
||||
self.n_samples_gen = n_samples_gen
|
||||
self.n_samples_sel = n_samples_sel
|
||||
self.comparison_measure = qp.error.from_name(comparison_measure)
|
||||
self.random_state = random_state
|
||||
|
||||
def fit(self, data: LabelledCollection):
|
||||
train, val = data.split_stratified()
|
||||
|
@ -96,7 +98,7 @@ class LocalStackingQuantification2(BaseQuantifier):
|
|||
samples = []
|
||||
samples_pred_prevs = []
|
||||
for i in range(self.n_samples_gen):
|
||||
sample_i = self.val_data.sampling(test_size, *pred_prevs, random_state=self.random_state)
|
||||
sample_i = self.val_data.sampling(test_size, *pred_prevs)
|
||||
pred_prev_sample_i = self.surrogate_quantifier.quantify(sample_i.X)
|
||||
samples.append(sample_i)
|
||||
samples_pred_prevs.append(pred_prev_sample_i)
|
||||
|
@ -110,3 +112,95 @@ class LocalStackingQuantification2(BaseQuantifier):
|
|||
|
||||
corrected_prev = self.normalize(corrected_prev)
|
||||
return corrected_prev
|
||||
|
||||
|
||||
class LocalStackingQuantification3(BaseQuantifier):
|
||||
|
||||
"""
|
||||
Este hace una red neuronal para el regresor y optimiza una metrica especifica
|
||||
"""
|
||||
|
||||
def __init__(self, surrogate_quantifier, batch_size=100, target='ae'):
|
||||
assert isinstance(surrogate_quantifier, AggregativeSoftQuantifier), \
|
||||
f'the surrogate quantifier must be of type {AggregativeSoftQuantifier.__class__.__name__}'
|
||||
self.surrogate_quantifier = surrogate_quantifier
|
||||
self.batch_size = batch_size
|
||||
self.target = target
|
||||
if target not in ['ae']:
|
||||
raise NotImplementedError('only AE supported')
|
||||
|
||||
def fit(self, data: LabelledCollection):
|
||||
train, val = data.split_stratified()
|
||||
self.surrogate_quantifier.fit(train)
|
||||
self.val_data = val
|
||||
return self
|
||||
|
||||
def gen_batch(self, test_size, pred_prevs):
|
||||
samples_true_prevs = []
|
||||
samples_pred_prevs = []
|
||||
for i in range(self.batch_size):
|
||||
sample_i = self.val_data.sampling(test_size, *pred_prevs)
|
||||
pred_prev_sample_i = self.surrogate_quantifier.quantify(sample_i.X)
|
||||
samples_true_prevs.append(sample_i.prevalence())
|
||||
samples_pred_prevs.append(pred_prev_sample_i)
|
||||
|
||||
samples_pred_prevs = torch.from_numpy(np.asarray(samples_pred_prevs)).float()
|
||||
samples_true_prevs = torch.from_numpy(np.asarray(samples_true_prevs)).float()
|
||||
|
||||
return samples_true_prevs, samples_pred_prevs
|
||||
|
||||
|
||||
|
||||
def quantify(self, instances: np.ndarray):
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
assert hasattr(self, 'val_data'), 'quantify called before fit'
|
||||
pred_prevs = self.surrogate_quantifier.quantify(instances)
|
||||
test_size = instances.shape[0]
|
||||
n_classes = len(pred_prevs)
|
||||
|
||||
reg = DistributionRegressor(n_classes)
|
||||
optimizer = torch.optim.Adam(reg.parameters(), lr=0.01)
|
||||
loss_fn = nn.L1Loss()
|
||||
|
||||
reg.train()
|
||||
n_epochs = 500
|
||||
best_loss = None
|
||||
PATIENCE = 10
|
||||
patience = PATIENCE
|
||||
pbar = tqdm(range(n_epochs), total=n_epochs)
|
||||
for epoch in pbar:
|
||||
true_prev, pred_prev = self.gen_batch(test_size, pred_prevs)
|
||||
pred_prev_hat = reg(pred_prev)
|
||||
loss = loss_fn(pred_prev_hat, true_prev)
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
loss_val = loss.item()
|
||||
pbar.set_description(f'loss={loss_val:.5f}')
|
||||
|
||||
# early stop
|
||||
if best_loss is None or loss_val < best_loss:
|
||||
best_loss = loss_val
|
||||
patience = PATIENCE
|
||||
else:
|
||||
patience -= 1
|
||||
|
||||
if patience <= 0:
|
||||
print('\tearly stop!')
|
||||
break
|
||||
|
||||
reg.eval()
|
||||
with torch.no_grad():
|
||||
target_prev = torch.from_numpy(pred_prevs).float()
|
||||
corrected_prev = reg(target_prev)
|
||||
corrected_prev = corrected_prev.detach().numpy()
|
||||
return corrected_prev
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,75 @@
|
|||
import os
|
||||
from time import time
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
import quapy as qp
|
||||
from LocalStack.method import *
|
||||
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
||||
from quapy.model_selection import GridSearchQ
|
||||
from quapy.protocol import UPP
|
||||
from pathlib import Path
|
||||
|
||||
SEED = 1
|
||||
|
||||
|
||||
|
||||
METHODS = [
|
||||
('PACC', PACC(), {}),
|
||||
('EMQ', EMQ(), {}),
|
||||
('KDEy-ML', KDEyML(), {}),
|
||||
]
|
||||
|
||||
TRANSDUCTIVE_METHODS = [
|
||||
('LSQ', LocalStackingQuantification(EMQ()), {}),
|
||||
('LSQ2', LocalStackingQuantification2(EMQ()), {}),
|
||||
('LSQ-torch', LocalStackingQuantification3(EMQ()), {})
|
||||
]
|
||||
|
||||
def show_results(result_path):
|
||||
import pandas as pd
|
||||
df = pd.read_csv(result_path + '.csv', sep='\t')
|
||||
pd.set_option('display.max_columns', None)
|
||||
pd.set_option('display.max_rows', None)
|
||||
pd.set_option('display.width', 1000) # Ajustar el ancho máximo
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE"], margins=True)
|
||||
print(pv)
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["MRAE"], margins=True)
|
||||
print(pv)
|
||||
# pv = df.pivot_table(index='Dataset', columns="Method", values=["KLD"], margins=True)
|
||||
# print(pv)
|
||||
# pv = df.pivot_table(index='Dataset', columns="Method", values=["TR-TIME"], margins=True)
|
||||
# print(pv)
|
||||
# pv = df.pivot_table(index='Dataset', columns="Method", values=["TE-TIME"], margins=True)
|
||||
# print(pv)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
qp.environ['SAMPLE_SIZE'] = 500
|
||||
qp.environ['N_JOBS'] = -1
|
||||
n_bags_val = 25
|
||||
n_bags_test = 100
|
||||
result_dir = f'results_quantification/localstack'
|
||||
|
||||
os.makedirs(result_dir, exist_ok=True)
|
||||
|
||||
global_result_path = f'{result_dir}/allmethods'
|
||||
with open(global_result_path + '.csv', 'wt') as csv:
|
||||
csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\tTR-TIME\tTE-TIME\n')
|
||||
|
||||
for method_name, quantifier, param_grid in METHODS + TRANSDUCTIVE_METHODS:
|
||||
|
||||
with open(global_result_path + '.csv', 'at') as csv:
|
||||
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS:
|
||||
|
||||
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
|
||||
|
||||
if os.path.exists(local_result_path):
|
||||
# print(f'result file {local_result_path} already exist; skipping')
|
||||
report = qp.util.load_report(local_result_path)
|
||||
|
||||
means = report.mean(numeric_only=True)
|
||||
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n')
|
||||
csv.flush()
|
||||
|
||||
show_results(global_result_path)
|
Loading…
Reference in New Issue