generating data with make classification

This commit is contained in:
Alejandro Moreo Fernandez 2025-06-15 11:57:49 +02:00
parent 72aac91989
commit f063e4f5dc
3 changed files with 350 additions and 0 deletions

View File

@ -0,0 +1,91 @@
import os
from pathlib import Path
from sklearn.datasets import make_classification
import numpy as np
from quapy.data import LabelledCollection
from quapy.protocol import UniformPrevalenceProtocol
import quapy.functional as F
import pandas as pd
random_state = 0
n_features = 10
n_areas = 50
n_per_area = 1_000
population_size = n_areas * n_per_area
n_experiments = 100
n_survey = population_size//n_experiments
print(f'{n_features=}')
print(f'{n_areas=}')
print(f'{n_per_area=}')
print(f'{population_size=}')
print(f'{n_experiments=}')
print(f'{n_survey=}')
X, y = make_classification(
n_samples=population_size * 100,
n_features=n_features,
n_informative=n_features//2,
n_redundant=2,
n_repeated=0,
n_classes=2,
n_clusters_per_class=2,
weights=[0.5, 0.5],
flip_y=0.01,
class_sep=1.0,
hypercube=True,
shift=0.0,
scale=1.0,
shuffle=True,
random_state=random_state)
pool = LabelledCollection(X, y, classes=[0,1])
upp = UniformPrevalenceProtocol(pool, sample_size=n_per_area, repeats=n_areas, random_state=random_state, return_type='labelled_collection')
data_X = []
data_y = []
data_area = []
experiment_selections = []
for area_id, area_sample in enumerate(upp()):
print(f'{area_id=} has prevalence={F.strprev(area_sample.prevalence())}')
data_X.append(area_sample.X)
data_y.append(area_sample.y)
data_area.append([area_id]*n_per_area)
data_X = np.concatenate(data_X)
data_y = np.concatenate(data_y)
data_area = np.concatenate(data_area)
assert len(data_area) == population_size, 'unexpected size!'
idx = np.arange(population_size)
rand_order = np.random.permutation(population_size)
for experiment_id, offset_id in enumerate(range(0,population_size,n_survey)):
experiment_sel = rand_order[offset_id:offset_id+n_survey]
in_sample_id = np.zeros_like(data_area)
in_sample_id[experiment_sel] = 1
experiment_selections.append(in_sample_id)
# compose the dataframe
data_dic = {
'ID': idx,
'Y': data_y,
}
for feat_id in range(n_features):
data_dic[f'X_{feat_id}'] = data_X[:,feat_id]
data_dic['area'] = data_area
for experiment_id, experiment_selection in enumerate(experiment_selections):
data_dic[f'InSample_{experiment_id}'] = experiment_selection
df = pd.DataFrame(data_dic)
data_path = f'./data/data_nF{n_features}_nA{n_areas}_P{population_size}_nExp{n_experiments}.csv'
os.makedirs(Path(data_path).parent, exist_ok=True)
df.to_csv(data_path, index=0)

View File

@ -0,0 +1,124 @@
import os
from os.path import join
import numpy as np
import pandas as pd
from sklearn.calibration import CalibratedClassifierCV
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
from pathlib import Path
from quapy.data import LabelledCollection
from quapy.model_selection import GridSearchQ
from quapy.protocol import APP
from quapy.method.aggregative import PACC, PCC, EMQ, DMy, ACC, KDEyML, CC
import quapy.functional as F
from tqdm import tqdm
pd.set_option('display.max_columns', None)
pd.set_option('display.width', 1000)
def load_data(data_path):
_, nF, nA, P, nExp = Path(data_path).name.replace('.csv','').split('_')
nF = int(nF.replace('nF', ''))
nExp = int(nExp.replace('nExp', ''))
df = pd.read_csv(data_path, index_col = 0)
X_T = []
for feat_id in range(nF):
Xcol = df[f'X_{feat_id}'].values
X_T.append(Xcol)
X = np.asarray(X_T).T
y = df.Y.values
areas = df.area.values
return X, y, areas, nExp, df
def methods():
yield 'CC', CC(classifier=LogisticRegression())
yield 'PCC', PCC(classifier=LogisticRegression())
yield 'ACC', ACC(classifier=LogisticRegression())
yield 'PACC', PACC(classifier=LogisticRegression())
yield 'EMQ', EMQ(classifier=LogisticRegression())
yield 'KDEy', KDEyML(classifier=LogisticRegression(), bandwidth=0.05)
yield 'KDEy01', KDEyML(classifier=LogisticRegression())
data_path = './data/data_nF10_nA50_P50000_nExp100.csv'
config = Path(data_path).name.replace('.csv','')
result_dir = f'./results/{config}'
os.makedirs(result_dir, exist_ok=True)
X, y, A, numExperiments, df = load_data(data_path)
areas = sorted(np.unique(A))
n_areas = len(areas)
methods_results = []
for q_name, quantifier in methods():
result_path = join(result_dir, f'{q_name}.csv')
if os.path.exists(result_path):
method_results = pd.read_csv(result_path, index_col=0)
else:
results = []
pbar = tqdm(range(numExperiments), total=numExperiments)
for experiment_id in pbar:
pbar.set_description(f'q_name={q_name}')
in_sample = df[f'InSample_{experiment_id}'].values.astype(dtype=bool)
Xtr = X[in_sample]
ytr = y[in_sample]
Atr = A[in_sample]
# Xte = X[~in_sample]
# yte = y[~in_sample]
# Ate = A[~in_sample]
Xte = X
yte = y
Ate = A
train = LabelledCollection(Xtr, ytr, classes=[0, 1])
quantifier.fit(train)
for area in areas:
sel_te_a = Ate == area
test_A = LabelledCollection(Xte[sel_te_a], yte[sel_te_a], classes=[0,1])
pred_prev = quantifier.quantify(test_A.X)[1]
true_prev = test_A.prevalence()[1]
ae = abs(pred_prev-true_prev)
results.append({
'experiment_id': experiment_id,
'area': area,
'method': q_name,
'true-prev': true_prev,
'estim-prev': pred_prev,
'AE': ae
})
method_results = pd.DataFrame(results)
method_results.to_csv(result_path, index=0)
methods_results.append(method_results)
methods_results = pd.concat(methods_results)
pv = methods_results.pivot_table(
index='area',
columns='method',
values='AE',
aggfunc='mean',
margins=True,
margins_name='Mean'
)
print(pv)

View File

@ -0,0 +1,135 @@
import numpy as np
import pandas as pd
from sklearn.calibration import CalibratedClassifierCV
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
from quapy.data import LabelledCollection
from quapy.model_selection import GridSearchQ
from quapy.protocol import APP
from quapy.method.aggregative import PACC, PCC, EMQ, DMy, ACC, KDEyML, CC
import quapy.functional as F
def show_data(X, y=None, nbins=50):
import matplotlib.pyplot as plt
if y is None:
plt.hist(X, bins=nbins, edgecolor='black')
else:
pos = X[y==1]
neg = X[y==0]
bins = np.histogram_bin_edges(X, bins=nbins)
plt.hist(pos, bins=bins, edgecolor='black', label='positive', alpha=0.5)
plt.hist(neg, bins=bins, edgecolor='black', label='negative', alpha=0.5)
plt.xlabel('value')
plt.ylabel('frequency')
plt.show()
df = pd.read_csv('./data/Simulated_PopulationData.csv', index_col=0)
X = df.X.values.reshape(-1,1)
y = df.Y.values
A = df.area.values
# X[y==1] += 2
show_data(X, y, nbins=50)
show_data(X, nbins=50)
areas = sorted(np.unique(A))
n_areas = len(areas)
N_EXPERIMENTS=2
# print(list(df.columns))
for experiment_id in range(1, N_EXPERIMENTS+1):
in_sample = df[f'InSample_{experiment_id}'].values.astype(dtype=bool)
Xtr = X[in_sample]
ytr = y[in_sample]
Atr = A[in_sample]
show_data(Xtr, ytr)
show_data(Xtr)
# Xte = X[~in_sample]
# yte = y[~in_sample]
# Ate = A[~in_sample]
# baseline_soft = df[f'PrCens_{experiment_id}'].values[~in_sample]
# baseline_hard = df[f'YCens_{experiment_id}'].values[~in_sample]
Xte = X
yte = y
Ate = A
baseline_soft = df[f'PrCens_{experiment_id}'].values
baseline_hard = df[f'YCens_{experiment_id}'].values
train = LabelledCollection(Xtr, ytr, classes=[0, 1])
# print(f'Experiment {experiment_id}: training prevalence = {train.prevalence()[1]:.3f}')
q = CC(classifier=LogisticRegression())
# q = PACC(classifier=LogisticRegression())
# q = EMQ(classifier=LogisticRegression())
# q = KDEyML(classifier=LogisticRegression(), bandwidth=0.001)
q = PCC(classifier=LogisticRegression(C=1))
# q = DMy(classifier=LogisticRegression(), nbins=16)
q.fit(train)
# tr, val = train.split_stratified(random_state=0)
# mod_sel = GridSearchQ(
# model=q,
# param_grid={
# 'classifier__C':np.logspace(-3,3,7),
# 'classifier__class_weight':['balance', None],
# 'bandwidth': np.linspace(0.02, 0.20, 19)
# },
# protocol=APP(data=val, sample_size=100, n_prevalences=21, repeats=10, random_state=0),
# refit=True,
# n_jobs=-1
# ).fit(tr)
# q = mod_sel.best_model_
mae = []
mae_baseline_soft = []
mae_baseline_hard = []
for area in areas:
# sel_tr_a = Atr == area
sel_te_a = Ate == area
# train_A = LabelledCollection(Xtr[sel_tr_a], ytr[sel_tr_a], classes=[0,1])
test_A = LabelledCollection(Xte[sel_te_a], yte[sel_te_a], classes=[0,1])
# if np.prod(train_A.prevalence())==0: continue
# print(f'train-prev A = {train_A.prevalence()} n_instances={len(train_A)}')
# q = DMy(classifier=LogisticRegression())
# q.fit(train_A)
pred_prev = q.quantify(test_A.X)[1]
true_prev = test_A.prevalence()[1]
ae = abs(pred_prev-true_prev)
mae.append(ae)
baseline_soft_estim = np.mean(baseline_soft[sel_te_a])
ae_baseline_soft = abs(baseline_soft_estim-true_prev)
mae_baseline_soft.append(ae_baseline_soft)
baseline_hard_estim = np.mean(baseline_hard[sel_te_a])
ae_baseline_hard = abs(baseline_hard_estim - true_prev)
mae_baseline_hard.append(ae_baseline_hard)
print(f'Area {area} true={true_prev:.2f} '
f'baseline-soft={baseline_soft_estim:.3f} (AE={ae_baseline_soft:.3f}) '
f'baseline-hard={baseline_hard_estim:.3f} (AE={ae_baseline_hard:.3f}) '
f'predicted={pred_prev:.3f} (AE={ae:.3f})')
mae = np.mean(mae)
mae_baseline_soft = np.mean(mae_baseline_soft)
mae_baseline_hard = np.mean(mae_baseline_hard)
print(f'Experiment {experiment_id} Baseline(soft)={mae_baseline_soft:.3f} Baseline(hard)={mae_baseline_hard:.3f} MAE={mae:.3f}')