adding kdex

This commit is contained in:
Alejandro Moreo Fernandez 2025-10-23 14:12:39 +02:00
parent 41baeb78ca
commit f227ed2f60
2 changed files with 89 additions and 30 deletions

View File

@ -1,16 +1,21 @@
from scipy.sparse import issparse
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import quapy as qp
from data import LabelledCollection
import numpy as np
from experimental_non_aggregative.custom_vectorizers import *
from method._kdey import KDEBase
from protocol import APP
from quapy.method.aggregative import HDy, DistributionMatchingY
from quapy.method.base import BaseQuantifier
from scipy import optimize
import pandas as pd
import quapy.functional as F
# TODO: explore the bernoulli (term presence/absence) variant
@ -72,6 +77,51 @@ class DxS(BaseQuantifier):
class KDExML(BaseQuantifier, KDEBase):
def __init__(self, bandwidth=0.1, standardize=False):
self._check_bandwidth(bandwidth)
self.bandwidth = bandwidth
self.standardize = standardize
def fit(self, X, y):
classes = sorted(np.unique(y))
if self.standardize:
self.scaler = StandardScaler()
X = self.scaler.fit_transform(X)
if issparse(X):
X = X.toarray()
self.mix_densities = self.get_mixture_components(X, y, classes, self.bandwidth)
return self
def predict(self, X):
"""
Searches for the mixture model parameter (the sought prevalence values) that maximizes the likelihood
of the data (i.e., that minimizes the negative log-likelihood)
:param X: instances in the sample
:return: a vector of class prevalence estimates
"""
epsilon = 1e-10
if issparse(X):
X = X.toarray()
n_classes = len(self.mix_densities)
if self.standardize:
X = self.scaler.transform(X)
test_densities = [self.pdf(kde_i, X) for kde_i in self.mix_densities]
def neg_loglikelihood(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip (prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
return -np.sum(test_loglikelihood)
return F.optim_minimize(neg_loglikelihood, n_classes)
if __name__ == '__main__':
qp.environ['SAMPLE_SIZE'] = 250
@ -91,43 +141,51 @@ if __name__ == '__main__':
data = qp.datasets.fetch_reviews(dataset, tfidf=False)
bernoulli_vectorizer = CountVectorizer(min_df=min_df, binary=True)
dxs = DxS(divergence=div, vectorizer=bernoulli_vectorizer)
yield data, dxs, 'DxS-Bernoulli'
multinomial_vectorizer = CountVectorizer(min_df=min_df, binary=False)
dxs = DxS(divergence=div, vectorizer=multinomial_vectorizer)
yield data, dxs, 'DxS-multinomial'
tf_vectorizer = TfidfVectorizer(sublinear_tf=False, use_idf=False, min_df=min_df, norm=None)
dxs = DxS(divergence=div, vectorizer=tf_vectorizer)
yield data, dxs, 'DxS-TF'
logtf_vectorizer = TfidfVectorizer(sublinear_tf=True, use_idf=False, min_df=min_df, norm=None)
dxs = DxS(divergence=div, vectorizer=logtf_vectorizer)
yield data, dxs, 'DxS-logTF'
tfidf_vectorizer = TfidfVectorizer(use_idf=True, min_df=min_df, norm=None)
dxs = DxS(divergence=div, vectorizer=tfidf_vectorizer)
yield data, dxs, 'DxS-TFIDF'
tfidf_vectorizer = TfidfVectorizer(use_idf=True, min_df=min_df, norm='l2')
dxs = DxS(divergence=div, vectorizer=tfidf_vectorizer)
yield data, dxs, 'DxS-TFIDF-l2'
# bernoulli_vectorizer = CountVectorizer(min_df=min_df, binary=True)
# dxs = DxS(divergence=div, vectorizer=bernoulli_vectorizer)
# yield data, dxs, 'DxS-Bernoulli'
#
# multinomial_vectorizer = CountVectorizer(min_df=min_df, binary=False)
# dxs = DxS(divergence=div, vectorizer=multinomial_vectorizer)
# yield data, dxs, 'DxS-multinomial'
#
# tf_vectorizer = TfidfVectorizer(sublinear_tf=False, use_idf=False, min_df=min_df, norm=None)
# dxs = DxS(divergence=div, vectorizer=tf_vectorizer)
# yield data, dxs, 'DxS-TF'
#
# logtf_vectorizer = TfidfVectorizer(sublinear_tf=True, use_idf=False, min_df=min_df, norm=None)
# dxs = DxS(divergence=div, vectorizer=logtf_vectorizer)
# yield data, dxs, 'DxS-logTF'
#
# tfidf_vectorizer = TfidfVectorizer(use_idf=True, min_df=min_df, norm=None)
# dxs = DxS(divergence=div, vectorizer=tfidf_vectorizer)
# yield data, dxs, 'DxS-TFIDF'
#
# tfidf_vectorizer = TfidfVectorizer(use_idf=True, min_df=min_df, norm='l2')
# dxs = DxS(divergence=div, vectorizer=tfidf_vectorizer)
# yield data, dxs, 'DxS-TFIDF-l2'
tsr_vectorizer = TSRweighting(tsr_function=information_gain, min_df=min_df, norm='l2')
dxs = DxS(divergence=div, vectorizer=tsr_vectorizer)
yield data, dxs, 'DxS-TFTSR-l2'
data = qp.datasets.fetch_reviews(dataset, tfidf=True, min_df=min_df)
kdex = KDExML()
reduction = TruncatedSVD(n_components=100, random_state=0)
red_data = qp.data.preprocessing.instance_transformation(data, transformer=reduction, inplace=False)
yield red_data, kdex, 'KDEx'
hdy = HDy(LogisticRegression())
yield data, hdy, 'HDy'
dm = DistributionMatchingY(LogisticRegression(), divergence=div, nbins=5)
yield data, dm, 'DM-5b'
# dm = DistributionMatchingY(LogisticRegression(), divergence=div, nbins=5)
# yield data, dm, 'DM-5b'
#
# dm = DistributionMatchingY(LogisticRegression(), divergence=div, nbins=10)
# yield data, dm, 'DM-10b'
dm = DistributionMatchingY(LogisticRegression(), divergence=div, nbins=10)
yield data, dm, 'DM-10b'
result_path = 'results.csv'

View File

@ -24,6 +24,7 @@ def instance_transformation(dataset:Dataset, transformer, inplace=False):
"""
training_transformed = transformer.fit_transform(*dataset.training.Xy)
test_transformed = transformer.transform(dataset.test.X)
orig_name = dataset.name
if inplace:
dataset.training = LabelledCollection(training_transformed, dataset.training.labels, dataset.classes_)
@ -34,10 +35,10 @@ def instance_transformation(dataset:Dataset, transformer, inplace=False):
else:
training = LabelledCollection(training_transformed, dataset.training.labels.copy(), dataset.classes_)
test = LabelledCollection(test_transformed, dataset.test.labels.copy(), dataset.classes_)
vocab = None
if hasattr(transformer, 'vocabulary_'):
return Dataset(training, test, transformer.vocabulary_)
else:
return Dataset(training, test)
vocab = transformer.vocabulary_
return Dataset(training, test, vocabulary=vocab, name=orig_name)
def text2tfidf(dataset:Dataset, min_df=3, sublinear_tf=True, inplace=False, **kwargs):