diff --git a/BayesianKDEy/full_experiments.py b/BayesianKDEy/full_experiments.py index 2fd7080..a2f3c9c 100644 --- a/BayesianKDEy/full_experiments.py +++ b/BayesianKDEy/full_experiments.py @@ -6,13 +6,14 @@ from pathlib import Path from sklearn.linear_model import LogisticRegression import quapy as qp from BayesianKDEy._bayeisan_kdey import BayesianKDEy +from method.aggregative import DistributionMatchingY as DMy from quapy.method.base import BinaryQuantifier from quapy.model_selection import GridSearchQ from quapy.data import Dataset # from BayesianKDEy.plot_simplex import plot_prev_points, plot_prev_points_matplot -from quapy.method.confidence import ConfidenceIntervals, BayesianCC, PQ, WithConfidenceABC +from quapy.method.confidence import ConfidenceIntervals, BayesianCC, PQ, WithConfidenceABC, AggregativeBootstrap from quapy.functional import strprev -from quapy.method.aggregative import KDEyML +from quapy.method.aggregative import KDEyML, ACC from quapy.protocol import UPP import quapy.functional as F import numpy as np @@ -34,9 +35,14 @@ def new_classifier(): def methods(): cls, cls_hyper = new_classifier() + hdy_hyper = {**cls_hyper, 'n_bins': [3,4,5,8,16,32]} + kdey_hyper = {**cls_hyper, 'bandwidth': [0.001, 0.005, 0.01, 0.05, 0.1, 0.2]} + yield 'BootstrapACC', AggregativeBootstrap(ACC(clone(cls)), n_test_samples=1000), cls_hyper + yield 'BootstrapHDy', AggregativeBootstrap(DMy(clone(cls), divergence='HD'), n_test_samples=1000), hdy_hyper + yield 'BootstrapKDEy', AggregativeBootstrap(KDEyML(clone(cls)), n_test_samples=1000), kdey_hyper # yield 'BayesianACC', BayesianCC(clone(cls), mcmc_seed=0), cls_hyper - # yield 'BayesianHDy', PQ(clone(cls), stan_seed=0), {**cls_hyper, 'n_bins': [3,4,5,8,16,32]} - yield 'BayesianKDEy', BayesianKDEy(clone(cls), mcmc_seed=0), {**cls_hyper, 'bandwidth': [0.001, 0.005, 0.01, 0.05, 0.1, 0.2]} + # yield 'BayesianHDy', PQ(clone(cls), stan_seed=0), hdy_hyper + # yield 'BayesianKDEy', BayesianKDEy(clone(cls), mcmc_seed=0), kdey_hyper def experiment(dataset: Dataset, method: WithConfidenceABC, grid: dict):