Compare commits

..

No commits in common. "6f7a1e511ee16d0a77fe7c17c34df179239f868b" and "8dfb109b410bd8a9da2d8781c2104f5aeb83ef66" have entirely different histories.

10 changed files with 12 additions and 6437 deletions

View File

@ -1,4 +1,4 @@
Change Log 0.1.8g
Change Log 0.1.8
----------------
- Added Kernel Density Estimation methods (KDEyML, KDEyCS, KDEyHD) as proposed in the paper:

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -3,12 +3,9 @@ import pickle
import os
import sys
from os.path import join
import numpy as np
from sklearn.linear_model import LogisticRegression as LR
from scripts.constants import SAMPLE_SIZE
from scripts.evaluate import normalized_match_distance
from LeQua2024._lequa2024 import LEQUA2024_TASKS, fetch_lequa2024, LEQUA2024_ZENODO
from quapy.method.aggregative import *
from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE
@ -38,18 +35,11 @@ def wrap_params(cls_params:dict, prefix:str):
def baselines():
q_params = wrap_params(lr_params, 'classifier')
kde_params = {**q_params, 'bandwidth': np.linspace(0.01, 0.20, 20)}
dm_params = {**q_params, 'nbins': [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 64]}
yield CC(new_cls()), "CC", q_params
yield ACC(new_cls()), "ACC", q_params
yield PCC(new_cls()), "PCC", q_params
yield PACC(new_cls()), "PACC", q_params
yield SLD(new_cls()), "SLD", q_params
#yield KDEyML(new_cls()), "KDEy-ML", kde_params
#yield KDEyHD(new_cls()), "KDEy-HD", kde_params
# yield KDEyCS(new_cls()), "KDEy-CS", kde_params
#yield DMy(new_cls()), "DMy", dm_params
def main(args):
@ -87,7 +77,7 @@ def main(args):
quantifier,
param_grid,
protocol=gen_val,
error=normalized_match_distance if args.task=='T3' else qp.error.mrae,
error=qp.error.mrae,
refit=False,
verbose=True,
n_jobs=-1

View File

@ -7,7 +7,6 @@ from tqdm import tqdm
from scripts.data import gen_load_samples
from glob import glob
from scripts import constants
from regressor import KDEyRegressor, RegressionToSimplex
"""
LeQua2024 prediction script

View File

@ -1,133 +0,0 @@
import pickle
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.model_selection import GridSearchCV
from sklearn.multioutput import MultiOutputRegressor
from sklearn.pipeline import Pipeline
from sklearn.svm import SVR
from LeQua2024._lequa2024 import fetch_lequa2024
from quapy.data import LabelledCollection
from quapy.protocol import AbstractProtocol
from quapy.method.base import BaseQuantifier
import quapy.functional as F
from tqdm import tqdm
from scripts.evaluate import normalized_match_distance, match_distance
def projection_simplex_sort(unnormalized_arr) -> np.ndarray:
"""Projects a point onto the probability simplex.
[This code is taken from the devel branch, that will correspond to the future QuaPy 0.1.9]
The code is adapted from Mathieu Blondel's BSD-licensed
`implementation <https://gist.github.com/mblondel/6f3b7aaad90606b98f71>`_
(see function `projection_simplex_sort` in their repo) which is accompanying the paper
Mathieu Blondel, Akinori Fujino, and Naonori Ueda.
Large-scale Multiclass Support Vector Machine Training via Euclidean Projection onto the Simplex,
ICPR 2014, `URL <http://www.mblondel.org/publications/mblondel-icpr2014.pdf>`_
:param `unnormalized_arr`: point in n-dimensional space, shape `(n,)`
:return: projection of `unnormalized_arr` onto the (n-1)-dimensional probability simplex, shape `(n,)`
"""
unnormalized_arr = np.asarray(unnormalized_arr)
n = len(unnormalized_arr)
u = np.sort(unnormalized_arr)[::-1]
cssv = np.cumsum(u) - 1.0
ind = np.arange(1, n + 1)
cond = u - cssv / ind > 0
rho = ind[cond][-1]
theta = cssv[cond][-1] / float(rho)
return np.maximum(unnormalized_arr - theta, 0)
class RegressionToSimplex(BaseEstimator):
"""
A very simple regressor of probability distributions.
Internally, this class works by invoking an SVR regressor multioutput
followed by a mapping onto the probability simplex.
:param C: regularziation parameter for SVR
"""
def __init__(self, C=1):
self.C = C
def fit(self, X, y):
"""
Learns the correction
:param X: array-like of shape `(n_instances, n_classes)` with uncorrected prevalence vectors
:param y: array-like of shape `(n_instances, n_classes)` with true prevalence vectors
:return: self
"""
self.reg = MultiOutputRegressor(SVR(C=self.C), n_jobs=-1)
self.reg.fit(X, y)
return self
def predict(self, X):
"""
Corrects the a vector of prevalence values
:param X: array-like of shape `(n_classes,)` with one vector of uncorrected prevalence values
:return: array-like of shape `(n_classes,)` with one vector of corrected prevalence values
"""
y_ = self.reg.predict(X)
y_ = np.asarray([projection_simplex_sort(y_i) for y_i in y_])
return y_
class KDEyRegressor(BaseQuantifier):
"""
This class implements a regressor-based correction on top of a quantifier.
The quantifier is taken to be KDEy-ML, which is considered to be already trained (this
method simply loads a pickled object).
The method then optimizes a regressor that corrects prevalence vectors using the
validation samples as training data.
The regressor is based on a multioutput SVR and relies on a post-processing to guarantee
that the output lies on the probability simplex (see also RegressionToSimplex)
"""
def __init__(self, kde_path, Cs=np.logspace(-3,3,7)):
self.kde_path = kde_path
self.Cs = Cs
def fit(self, val_data: AbstractProtocol):
print(f'loading kde from {self.kde_path}')
self.kdey = pickle.load(open(self.kde_path, 'rb'))
print('representing val data with kde')
pbar = tqdm(val_data(), total=val_data.total())
Xs, Ys = [], []
for sample, prev in pbar:
prev_hat = self.kdey.quantify(sample)
Xs.append(prev_hat)
Ys.append(prev)
Xs = np.asarray(Xs)
Ys = np.asarray(Ys)
def scorer(estimator, X, y):
y_hat = estimator.predict(X)
md = normalized_match_distance(y, y_hat)
return (-md)
grid = {'C': self.Cs}
optim = GridSearchCV(
RegressionToSimplex(), param_grid=grid, scoring=scorer, verbose=0, cv=10, n_jobs=64
).fit(Xs, Ys)
self.regressor = optim.best_estimator_
return self
def quantify(self, instances):
prev_hat = self.kdey.quantify(instances)
return self.regressor.predict([prev_hat])[0]
if __name__ == '__main__':
train, gen_val, _ = fetch_lequa2024(task='T3', data_home='./data', merge_T3=True)
kdey_r = KDEyRegressor('./models/T3/KDEy-ML.pkl')
kdey_r.fit(gen_val)
pickle.dump(kdey_r, open('./models/T3/KDEyRegressor.pkl', 'wb'), protocol=pickle.HIGHEST_PROTOCOL)

View File

@ -1,6 +1,15 @@
#!/bin/bash
set -x
# download the official scripts
if [ ! -d "scripts" ]; then
echo "Downloading the official scripts from the LeQua 2024 github repo"
wget https://github.com/HLT-ISTI/LeQua2024_scripts/archive/refs/heads/main.zip
unzip main.zip
mv LeQua2024_scripts-main scripts
rm main.zip
fi
# T1: binary (n=2)
# T2: multiclass (n=28)
# T3: ordinal (n=5)

View File

@ -1,120 +0,0 @@
import os
from os.path import join
import pandas as pd
import quapy as qp
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
os.chdir('/home/moreo/QuaPy/LeQua2024/util_scripts')
print(os.getcwd())
qp.environ['SAMPLE_SIZE']=250
true_prevs_path = '../TruePrevalences/T4.test_prevalences/T4/public/test_prevalences.txt'
domain_prevs_path = '../T4_domain_prevalence/test_domain_prevalences.txt'
folder = '../Results_CODALAB_2024/extracted/TASK_4'
def load_result_file(path):
df = pd.read_csv(path, index_col=0)
id = df.index.to_numpy()
prevs = df.values
return id, prevs
method_files = [
#'ACC.csv',
#'CC.csv',
#'DistMatching-y.csv',
#'KDEy.csv',
#'PACC.csv',
'PCC.csv',
#'SLD.csv',
#'TeamCUFE.csv',
#'TeamGMNet.csv',
'tobiaslotz.csv'
]
method_names_nice={
'DistMatching-y': 'DM',
'TeamGMNet': 'UniOviedo(Team1)',
'tobiaslotz': 'Lamarr'
}
desired_order=[
'Lamarr',
'SLD',
'DM',
'KDEy',
'UniOviedo(Team1)'
]
desired_order=[
'PCC', 'Lamarr'
]
# load the true values (sentiment prevalence, domain prevalence)
true_id, true_prevs = load_result_file(true_prevs_path)
dom_id, dom_prevs = load_result_file(domain_prevs_path)
assert (true_id == dom_id).all(), 'unmatched files'
# define the loss for evaluation
error_name = 'RAE'
error_log = False
if error_name == 'RAE':
err_function_ = qp.error.rae
elif error_name == 'AE':
err_function_ = qp.error.ae
else:
raise ValueError()
if error_log:
error_name = f'log({error_name})'
err_function = lambda x,y: np.log(err_function_(x,y))
else:
err_function = err_function_
# load the participant and baseline results
errors = {}
for method_file in method_files:
method_name = method_file.replace('.csv', '')
id, method_prevs = load_result_file(join(folder, method_file))
print(method_file)
assert (true_id == id).all(), f'unmatched files for {method_file}'
method_error = err_function(true_prevs, method_prevs)
method_name = method_names_nice.get(method_name, method_name)
errors[method_name] = method_error
dom_A_prevs = dom_prevs[:,0]
n_bins = 5
bins = np.linspace(dom_A_prevs.min(), dom_A_prevs.max(), n_bins + 1)
# Crear un DataFrame para los datos
df = pd.DataFrame({'dom_A_prevs': dom_A_prevs})
for method, err in errors.items():
df[method] = err
# Asignar cada valor de dom_A_prevs a un bin
df['bin'] = pd.cut(df['dom_A_prevs'], bins=bins, labels=False, include_lowest=True)
# Convertir el DataFrame a formato largo
df_long = df.melt(id_vars=['dom_A_prevs', 'bin'], value_vars=errors.keys(), var_name='Método', value_name='Error')
# Crear etiquetas de los bins para el eje X
bin_labels = [f"[{bins[i]:.3f}-{bins[i + 1]:.3f}" + (']' if i == n_bins-1 else ')') for i in range(n_bins)]
df_long['bin_label'] = df_long['bin'].map(dict(enumerate(bin_labels)))
# Crear el gráfico de boxplot en Seaborn
plt.figure(figsize=(14, 8))
sns.boxplot(x='bin', y='Error', hue='Método', data=df_long, palette='Set2', showfliers=False, hue_order=desired_order)
# Configurar etiquetas del eje X con los rangos de los bins
plt.xticks(ticks=range(n_bins), labels=bin_labels, rotation=0)
plt.xlabel("Prevalence of Books")
plt.ylabel(error_name)
#plt.title("Boxplots de Errores por Método dentro de Bins de dom_A_prevs")
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.tight_layout()
plt.grid(True, which='both', linestyle='--', linewidth=0.5)
#plt.show()
plt.savefig(f'./t4_{error_name}_pcc.png')

View File

@ -1,168 +0,0 @@
import os
from os.path import join
import pandas as pd
from quapy.data.base import LabelledCollection
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../../')))
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../')))
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), './')))
#from LeQua2024.scripts import constants
#from LeQua2024._lequa2024 import fetch_lequa2024
import quapy as qp
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
import glob
os.chdir('/home/moreo/QuaPy/LeQua2024')
print(os.getcwd())
qp.environ['SAMPLE_SIZE']=250
TASK=1
true_prevs_path = f'./TruePrevalences/T{TASK}.test_prevalences/T{TASK}/public/test_prevalences.txt'
folder = F'./Results_CODALAB_2024/extracted/TASK_{TASK}'
def load_result_file(path):
df = pd.read_csv(path, index_col=0)
id = df.index.to_numpy()
prevs = df.values
return id, prevs
method_files = glob.glob(f"{folder}/*.csv")
method_names_nice={
'DistMatching-y': 'DM',
'TeamGMNet': 'UniOviedo(Team1)',
'tobiaslotz': 'Lamarr'
}
exclude_methods=[
'TeamCUFE',
'hustav',
'PCC',
'CC'
]
# desired_order=[
# 'Lamarr',
# 'SLD',
# 'DM',
# 'KDEy',
# 'UniOviedo(Team1)'
# ]
# desired_order=[
# 'PCC', 'Lamarr'
# ]
# load the true values (sentiment prevalence, domain prevalence)
true_id, true_prevs = load_result_file(true_prevs_path)
# define the loss for evaluation
error_name = 'RAE'
error_log = False
if error_name == 'RAE':
err_function_ = qp.error.rae
elif error_name == 'AE':
err_function_ = qp.error.ae
else:
raise ValueError()
if error_log:
error_name = f'log({error_name})'
err_function = lambda x,y: np.log(err_function_(x,y))
else:
err_function = err_function_
def load_vector_documents(path):
"""
Loads vectorized documents. In case the sample is unlabelled,
the labels returned are None
:param path: path to the data sample containing the raw documents
:return: a tuple with the documents (np.ndarray of shape `(n,256)`) and the labels (a np.ndarray of shape `(n,)` if
the sample is labelled, or None if the sample is unlabelled), with `n` the number of instances in the sample
(250 for T1 and T4, 1000 for T2, and 200 for T3)
"""
D = pd.read_csv(path).to_numpy(dtype=float)
labelled = D.shape[1] == 257
if labelled:
X, y = D[:,1:], D[:,0].astype(int).flatten()
else:
X, y = D, None
return X, y
#train_prevalence = fetch_lequa2024(task=f'T{TASK}', data_home='./data')
train = LabelledCollection.load(f'/home/moreo/QuaPy/LeQua2024/data/lequa2024/T{TASK}/public/training_data.txt', loader_func=load_vector_documents)
train_prev = train.prevalence()
#train_prev = np.tile(train_prev, (len(true_id),1))
from quapy.plot import error_by_drift
# load the participant and baseline results
method_names, estim_prevs = [], []
for method_file in method_files:
method_name = Path(method_file).name.replace('.csv', '')
if method_name in exclude_methods:
continue
id, method_prevs = load_result_file(join(folder, method_name+'.csv'))
assert (true_id == id).all(), f'unmatched files for {method_file}'
method_name = method_names_nice.get(method_name, method_name)
method_names.append(method_name)
estim_prevs.append(method_prevs)
true_prevs = [true_prevs]*len(method_names)
tr_prevs =[train.prevalence()]*len(method_names)
error_by_drift(method_names,
true_prevs,
estim_prevs,
tr_prevs,
error_name='mrae', show_std=True,
show_density=True, vlines=True, savepath=f'./util_scripts/t{TASK}_{error_name}_pcc.png')
sys.exit()
shift=qp.error.ae(train_prev, true_prevs)
n_bins = 5
bins = np.linspace(shift.min(), shift.max(), n_bins + 1)
# Crear un DataFrame para los datos
df = pd.DataFrame({'dom_A_prevs': shift})
for method, err in errors.items():
df[method] = err
# Asignar cada valor de dom_A_prevs a un bin
df['bin'] = pd.cut(df['dom_A_prevs'], bins=bins, labels=False, include_lowest=True)
# Convertir el DataFrame a formato largo
df_long = df.melt(id_vars=['dom_A_prevs', 'bin'], value_vars=errors.keys(), var_name='Método', value_name='Error')
# Crear etiquetas de los bins para el eje X
bin_labels = [f"[{bins[i]:.3f}-{bins[i + 1]:.3f}" + (']' if i == n_bins-1 else ')') for i in range(n_bins)]
df_long['bin_label'] = df_long['bin'].map(dict(enumerate(bin_labels)))
# Crear el gráfico de boxplot en Seaborn
plt.figure(figsize=(14, 8))
sns.boxplot(x='bin', y='Error', hue='Método', data=df_long, palette='Set2', showfliers=False)
# Configurar etiquetas del eje X con los rangos de los bins
plt.xticks(ticks=range(n_bins), labels=bin_labels, rotation=0)
plt.xlabel("Amount of PPS between the training prevalence and the test prevalences, in terms of AE ")
plt.ylabel(error_name)
#plt.title("Boxplots de Errores por Método dentro de Bins de dom_A_prevs")
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.tight_layout()
plt.grid(True, which='both', linestyle='--', linewidth=0.5)
#plt.show()
plt.savefig(f'./util_scripts/t{TASK}_{error_name}_pcc.png')

View File

@ -1,6 +1,6 @@
from collections import defaultdict
import matplotlib.pyplot as plt
from matplotlib.pyplot import get_cmap
from matplotlib.cm import get_cmap
import numpy as np
from matplotlib import cm
from scipy.stats import ttest_ind_from_stats