Compare commits
4 Commits
faba2494b2
...
5f9dad4644
Author | SHA1 | Date |
---|---|---|
|
5f9dad4644 | |
|
9fb208fe4c | |
|
6ce5eea4f2 | |
|
f30c6ceaa1 |
|
@ -0,0 +1,3 @@
|
|||
[submodule "result_table"]
|
||||
path = result_table
|
||||
url = gitea@gitea-s2i2s.isti.cnr.it:moreo/result_table.git
|
|
@ -0,0 +1,2 @@
|
|||
|
||||
DEBUG = False
|
|
@ -1,13 +1,17 @@
|
|||
import os
|
||||
|
||||
import pickle
|
||||
import shutil
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from os.path import join
|
||||
import quapy as qp
|
||||
from quapy.protocol import UPP
|
||||
from quapy.method.aggregative import KDEyML
|
||||
from quapy.protocol import UPP
|
||||
from kdey_devel import KDEyMLauto
|
||||
from utils import *
|
||||
from constants import *
|
||||
import quapy.functional as F
|
||||
|
||||
DEBUG = False
|
||||
|
||||
qp.environ["SAMPLE_SIZE"] = 100 if DEBUG else 500
|
||||
val_repeats = 100 if DEBUG else 500
|
||||
|
@ -20,21 +24,24 @@ val_choice = {}
|
|||
|
||||
bandwidth_range = np.linspace(0.01, 0.20, 20)
|
||||
if DEBUG:
|
||||
bandwidth_range = np.linspace(0.01, 0.20, 10)
|
||||
bandwidth_range = np.linspace(0.01, 0.20, 5)
|
||||
|
||||
|
||||
def datasets():
|
||||
for dataset_name in qp.datasets.UCI_MULTICLASS_DATASETS:
|
||||
dataset_list = qp.datasets.UCI_MULTICLASS_DATASETS[:4]
|
||||
if DEBUG:
|
||||
dataset_list = dataset_list[:4]
|
||||
for dataset_name in dataset_list:
|
||||
dataset = qp.datasets.fetch_UCIMulticlassDataset(dataset_name)
|
||||
if DEBUG:
|
||||
dataset = dataset.reduce(random_state=0)
|
||||
yield dataset
|
||||
|
||||
|
||||
def experiment_dataset(dataset):
|
||||
train, test = dataset.train_test
|
||||
test_gen = UPP(test, repeats=test_repeats)
|
||||
|
||||
@measuretime
|
||||
def predict_b_modsel(dataset):
|
||||
# bandwidth chosen during model selection in validation
|
||||
train = dataset.training
|
||||
train_tr, train_va = train.split_stratified(random_state=0)
|
||||
kdey = KDEyML(random_state=0)
|
||||
modsel = qp.model_selection.GridSearchQ(
|
||||
|
@ -47,66 +54,69 @@ def experiment_dataset(dataset):
|
|||
).fit(train_tr)
|
||||
chosen_bandwidth = modsel.best_params_['bandwidth']
|
||||
modsel_choice = float(chosen_bandwidth)
|
||||
# kdey.set_params(bandwidth=chosen_bandwidth)
|
||||
# kdey.fit(train)
|
||||
# kdey.qua
|
||||
return modsel_choice
|
||||
|
||||
# results in test
|
||||
print(f"testing KDEy in {dataset.name}")
|
||||
dataset_results = []
|
||||
for b in bandwidth_range:
|
||||
kdey = KDEyML(bandwidth=b, random_state=0)
|
||||
@measuretime
|
||||
def predict_b_kdeymlauto(dataset):
|
||||
# bandwidth chosen during model selection in validation
|
||||
train, test = dataset.train_test
|
||||
kdey = KDEyMLauto(random_state=0)
|
||||
print(f'true-prevalence: {F.strprev(test.prevalence())}')
|
||||
chosen_bandwidth, _ = kdey.chose_bandwidth(train, test.X)
|
||||
auto_bandwidth = float(chosen_bandwidth)
|
||||
return auto_bandwidth
|
||||
|
||||
|
||||
def in_test_search(dataset, n_jobs=-1):
|
||||
train, test = dataset.train_test
|
||||
|
||||
print(f"generating true tests scores using KDEy in {dataset.name}")
|
||||
|
||||
def experiment_job(bandwidth):
|
||||
kdey = KDEyML(bandwidth=bandwidth, random_state=0)
|
||||
kdey.fit(train)
|
||||
|
||||
test_gen = UPP(test, repeats=test_repeats)
|
||||
mae = qp.evaluation.evaluate(kdey, protocol=test_gen, error_metric='mae', verbose=True)
|
||||
print(f'bandwidth={b}: {mae:.5f}')
|
||||
dataset_results.append((float(b), float(mae)))
|
||||
print(f'{bandwidth=}: {mae:.5f}')
|
||||
return float(mae)
|
||||
|
||||
return modsel_choice, dataset_results
|
||||
dataset_results = qp.util.parallel(experiment_job, bandwidth_range, n_jobs=n_jobs)
|
||||
return dataset_results, bandwidth_range
|
||||
|
||||
def plot_bandwidth(val_choice, test_results):
|
||||
for dataset_name in val_choice.keys():
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
bandwidths, results = zip(*test_results[dataset_name])
|
||||
|
||||
# Crear la gráfica
|
||||
plt.figure(figsize=(8, 6))
|
||||
|
||||
# Graficar los puntos de datos
|
||||
plt.plot(bandwidths, results, marker='o')
|
||||
|
||||
# Agregar la línea vertical en bandwidth_chosen
|
||||
plt.axvline(x=val_choice[dataset_name], color='r', linestyle='--', label=f'Bandwidth elegido: {val_choice[dataset_name]}')
|
||||
|
||||
# Agregar etiquetas y título
|
||||
plt.xlabel('Bandwidth')
|
||||
plt.ylabel('Resultado')
|
||||
plt.title('Gráfica de Bandwidth vs Resultado')
|
||||
|
||||
# Mostrar la leyenda
|
||||
plt.legend()
|
||||
|
||||
# Mostrar la gráfica
|
||||
plt.grid(True)
|
||||
# plt.show()
|
||||
os.makedirs('./plots', exist_ok=True)
|
||||
plt.savefig(f'./plots/{dataset_name}.png')
|
||||
|
||||
|
||||
|
||||
for dataset in datasets():
|
||||
if DEBUG:
|
||||
result_path = f'./results/debug/{dataset.name}.pkl'
|
||||
else:
|
||||
result_path = f'./results/{dataset.name}.pkl'
|
||||
print('NAME', dataset.name)
|
||||
print(len(dataset.training))
|
||||
print(len(dataset.test))
|
||||
|
||||
modsel_choice, dataset_results = qp.util.pickled_resource(result_path, experiment_dataset, dataset)
|
||||
val_choice[dataset.name] = modsel_choice
|
||||
test_results[dataset.name] = dataset_results
|
||||
result_path = f'./results/{dataset.name}/'
|
||||
if DEBUG:
|
||||
result_path = result_path.replace('results', 'results_debug')
|
||||
if os.path.exists(result_path):
|
||||
shutil.rmtree(result_path)
|
||||
|
||||
dataset_results, bandwidth_range = qp.util.pickled_resource(join(result_path, 'test.pkl'), in_test_search, dataset)
|
||||
|
||||
triplet_list_results = []
|
||||
modsel_choice, modsel_time = qp.util.pickled_resource(join(result_path, 'modsel.pkl'), predict_b_modsel, dataset)
|
||||
triplet_list_results.append(('modsel', modsel_choice, modsel_time,))
|
||||
auto_choice, auto_time = qp.util.pickled_resource(join(result_path, 'auto.pkl'), predict_b_kdeymlauto, dataset)
|
||||
triplet_list_results.append(('auto', auto_choice, auto_time,))
|
||||
|
||||
print(f'Dataset = {dataset.name}')
|
||||
print(modsel_choice)
|
||||
print(dataset_results)
|
||||
|
||||
plot_bandwidth(val_choice, test_results)
|
||||
plot_bandwidth(dataset.name, dataset_results, bandwidth_range, triplet_list_results)
|
||||
error_table(dataset.name, dataset_results, bandwidth_range, triplet_list_results)
|
||||
# time_table(dataset.name, dataset_results, bandwidth_range, triplet_list_results)
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,171 @@
|
|||
from typing import Union, Callable
|
||||
import numpy as np
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.neighbors import KernelDensity
|
||||
|
||||
import quapy as qp
|
||||
from quapy.data import LabelledCollection
|
||||
from quapy.method.aggregative import AggregativeSoftQuantifier, KDEyML
|
||||
import quapy.functional as F
|
||||
|
||||
from sklearn.metrics.pairwise import rbf_kernel
|
||||
from scipy import optimize
|
||||
|
||||
|
||||
|
||||
|
||||
class KDEyMLauto(KDEyML):
|
||||
def __init__(self, classifier: BaseEstimator = None, val_split=5, random_state=None, optim='two_steps'):
|
||||
self.classifier = qp._get_classifier(classifier)
|
||||
self.val_split = val_split
|
||||
self.bandwidth = None
|
||||
self.random_state = random_state
|
||||
self.optim = optim
|
||||
|
||||
def chose_bandwidth(self, train, test_instances):
|
||||
classif_predictions = self.classifier_fit_predict(train, fit_classifier=True, predict_on=self.val_split)
|
||||
te_posteriors = self.classify(test_instances)
|
||||
return self.transduce(classif_predictions, te_posteriors)
|
||||
|
||||
def transduce(self, classif_predictions, te_posteriors):
|
||||
tr_posteriors, tr_y = classif_predictions.Xy
|
||||
classes = classif_predictions.classes_
|
||||
n_classes = len(classes)
|
||||
|
||||
current_bandwidth = 0.05
|
||||
if self.optim == 'both_fine':
|
||||
current_bandwidth = np.full(fill_value=current_bandwidth, shape=(n_classes,))
|
||||
current_prevalence = np.full(fill_value=1 / n_classes, shape=(n_classes,))
|
||||
|
||||
iterations = 0
|
||||
convergence = False
|
||||
with qp.util.temp_seed(self.random_state):
|
||||
|
||||
while not convergence:
|
||||
previous_bandwidth = current_bandwidth
|
||||
previous_prevalence = current_prevalence
|
||||
|
||||
iterations += 1
|
||||
print(f'{iterations}:')
|
||||
|
||||
if self.optim == 'two_steps':
|
||||
current_prevalence = self.optim_minimize_prevalence(current_bandwidth, current_prevalence, tr_posteriors, tr_y, te_posteriors, classes)
|
||||
print(f'\testim-prev={F.strprev(current_prevalence)}')
|
||||
|
||||
current_bandwidth = self.optim_minimize_bandwidth(current_bandwidth, current_prevalence, tr_posteriors, tr_y, te_posteriors, classes)
|
||||
print(f'\tbandwidth={current_bandwidth}')
|
||||
if np.isclose(previous_bandwidth, current_bandwidth, atol=0.0001) and all(
|
||||
np.isclose(previous_prevalence, current_prevalence, atol=0.0001)):
|
||||
convergence = True
|
||||
elif self.optim == 'both':
|
||||
current_prevalence, current_bandwidth = self.optim_minimize_both(current_bandwidth, current_prevalence, tr_posteriors, tr_y, te_posteriors, classes)
|
||||
if np.isclose(previous_bandwidth, current_bandwidth, atol=0.0001) and all(np.isclose(previous_prevalence, current_prevalence, atol=0.0001)):
|
||||
convergence = True
|
||||
elif self.optim == 'both_fine':
|
||||
current_prevalence, current_bandwidth = self.optim_minimize_both_fine(current_bandwidth, current_prevalence, tr_posteriors, tr_y,
|
||||
te_posteriors, classes)
|
||||
|
||||
if all(np.isclose(previous_bandwidth, current_bandwidth, atol=0.0001)) and all(np.isclose(previous_prevalence, current_prevalence, atol=0.0001)):
|
||||
convergence = True
|
||||
|
||||
self.bandwidth = current_bandwidth
|
||||
print('bandwidth=', current_bandwidth)
|
||||
print('prevalence=', current_prevalence)
|
||||
return current_prevalence
|
||||
|
||||
def optim_minimize_prevalence(self, current_bandwidth, current_prev, tr_posteriors, tr_y, te_posteriors, classes):
|
||||
epsilon = 1e-10
|
||||
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, current_bandwidth)
|
||||
test_densities = [self.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
||||
|
||||
def neg_loglikelihood_prev(prev):
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
return optim_minimize(neg_loglikelihood_prev, current_prev)
|
||||
|
||||
def optim_minimize_bandwidth(self, current_bandwidth, current_prev, tr_posteriors, tr_y, te_posteriors, classes):
|
||||
epsilon = 1e-10
|
||||
def neg_loglikelihood_bandwidth(bandwidth):
|
||||
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth[0])
|
||||
test_densities = [self.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(current_prev, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
bounds = [(0.00001, 1)]
|
||||
r = optimize.minimize(neg_loglikelihood_bandwidth, x0=[current_bandwidth], method='SLSQP', bounds=bounds)
|
||||
print(f'iterations-bandwidth={r.nit}')
|
||||
return r.x[0]
|
||||
|
||||
def optim_minimize_both(self, current_bandwidth, current_prev, tr_posteriors, tr_y, te_posteriors, classes):
|
||||
epsilon = 1e-10
|
||||
n_classes = len(current_prev)
|
||||
def neg_loglikelihood_bandwidth(prevalence_bandwidth):
|
||||
bandwidth = prevalence_bandwidth[-1]
|
||||
prevalence = prevalence_bandwidth[:-1]
|
||||
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth)
|
||||
test_densities = [self.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prevalence, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
bounds = [(0, 1) for _ in range(n_classes)] + [(0.00001, 1)]
|
||||
constraints = ({'type': 'eq', 'fun': lambda x: 1 - sum(x[:n_classes])})
|
||||
prevalence_bandwidth = np.append(current_prev, current_bandwidth)
|
||||
r = optimize.minimize(neg_loglikelihood_bandwidth, x0=prevalence_bandwidth, method='SLSQP', bounds=bounds, constraints=constraints)
|
||||
print(f'iterations-both={r.nit}')
|
||||
prev_band = r.x
|
||||
current_prevalence = prev_band[:-1]
|
||||
current_bandwidth = prev_band[-1]
|
||||
return current_prevalence, current_bandwidth
|
||||
|
||||
def optim_minimize_both_fine(self, current_bandwidth, current_prev, tr_posteriors, tr_y, te_posteriors, classes):
|
||||
epsilon = 1e-10
|
||||
n_classes = len(current_bandwidth)
|
||||
def neg_loglikelihood_bandwidth(prevalence_bandwidth):
|
||||
prevalence = prevalence_bandwidth[:n_classes]
|
||||
bandwidth = prevalence_bandwidth[n_classes:]
|
||||
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth)
|
||||
test_densities = [self.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prevalence, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
bounds = [(0, 1) for _ in range(n_classes)] + [(0.00001, 1) for _ in range(n_classes)]
|
||||
constraints = ({'type': 'eq', 'fun': lambda x: 1 - sum(x[:n_classes])})
|
||||
prevalence_bandwidth = np.concatenate((current_prev, current_bandwidth))
|
||||
r = optimize.minimize(neg_loglikelihood_bandwidth, x0=prevalence_bandwidth, method='SLSQP', bounds=bounds, constraints=constraints)
|
||||
print(f'iterations-both-fine={r.nit}')
|
||||
prev_band = r.x
|
||||
current_prevalence = prev_band[:n_classes]
|
||||
current_bandwidth = prev_band[n_classes:]
|
||||
return current_prevalence, current_bandwidth
|
||||
|
||||
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
|
||||
self.classif_predictions = classif_predictions
|
||||
return self
|
||||
|
||||
def aggregate(self, posteriors: np.ndarray):
|
||||
return self.transduce(self.classif_predictions, posteriors)
|
||||
|
||||
|
||||
def optim_minimize(loss: Callable, init_prev: np.ndarray):
|
||||
"""
|
||||
Searches for the optimal prevalence values, i.e., an `n_classes`-dimensional vector of the (`n_classes`-1)-simplex
|
||||
that yields the smallest lost. This optimization is carried out by means of a constrained search using scipy's
|
||||
SLSQP routine.
|
||||
|
||||
:param loss: (callable) the function to minimize
|
||||
:return: (ndarray) the best prevalence vector found
|
||||
"""
|
||||
|
||||
n_classes = len(init_prev)
|
||||
# solutions are bounded to those contained in the unit-simplex
|
||||
bounds = tuple((0, 1) for _ in range(n_classes)) # values in [0,1]
|
||||
constraints = ({'type': 'eq', 'fun': lambda x: 1 - sum(x)}) # values summing up to 1
|
||||
r = optimize.minimize(loss, x0=init_prev, method='SLSQP', bounds=bounds, constraints=constraints)
|
||||
print(f'iterations-prevalence={r.nit}')
|
||||
return r.x
|
||||
|
|
@ -0,0 +1,156 @@
|
|||
import pickle
|
||||
import os
|
||||
from time import time
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
import quapy as qp
|
||||
from KDEy.kdey_devel import KDEyMLauto
|
||||
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
||||
from quapy.model_selection import GridSearchQ
|
||||
from quapy.protocol import UPP
|
||||
from pathlib import Path
|
||||
|
||||
SEED = 1
|
||||
|
||||
|
||||
def newLR():
|
||||
return LogisticRegression(max_iter=3000)
|
||||
|
||||
|
||||
# typical hyperparameters explored for Logistic Regression
|
||||
logreg_grid = {
|
||||
'C': [1],
|
||||
'class_weight': [None]
|
||||
}
|
||||
|
||||
|
||||
def wrap_hyper(classifier_hyper_grid: dict):
|
||||
return {'classifier__' + k: v for k, v in classifier_hyper_grid.items()}
|
||||
|
||||
|
||||
METHODS = [
|
||||
('PACC', PACC(newLR()), wrap_hyper(logreg_grid)),
|
||||
('EMQ', EMQ(newLR()), wrap_hyper(logreg_grid)),
|
||||
('KDEy-ML', KDEyML(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.linspace(0.01, 0.2, 20)}}),
|
||||
]
|
||||
|
||||
|
||||
"""
|
||||
TKDEyML era primero bandwidth (init 0.05) y luego prevalence (init uniform)
|
||||
TKDEyML2 era primero prevalence (init uniform) y luego bandwidth (init 0.05)
|
||||
TKDEyML3 era primero prevalence (init uniform) y luego bandwidth (init 0.1)
|
||||
TKDEyML4 es como ML2 pero max 5 iteraciones por optimización
|
||||
"""
|
||||
TRANSDUCTIVE_METHODS = [
|
||||
#('TKDEy-ML', KDEyMLauto(newLR()), None),
|
||||
('TKDEy-MLboth', KDEyMLauto(newLR(), optim='both'), None),
|
||||
('TKDEy-MLbothfine', KDEyMLauto(newLR(), optim='both_fine'), None),
|
||||
('TKDEy-ML2', KDEyMLauto(newLR()), None),
|
||||
#('TKDEy-ML3', KDEyMLauto(newLR()), None),
|
||||
#('TKDEy-ML4', KDEyMLauto(newLR()), None),
|
||||
]
|
||||
|
||||
def show_results(result_path):
|
||||
import pandas as pd
|
||||
df = pd.read_csv(result_path + '.csv', sep='\t')
|
||||
pd.set_option('display.max_columns', None)
|
||||
pd.set_option('display.max_rows', None)
|
||||
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE", "t_train"], margins=True)
|
||||
print(pv)
|
||||
|
||||
|
||||
def load_timings(result_path):
|
||||
import pandas as pd
|
||||
timings = defaultdict(lambda: {})
|
||||
if not Path(result_path + '.csv').exists():
|
||||
return timings
|
||||
|
||||
df = pd.read_csv(result_path + '.csv', sep='\t')
|
||||
return timings | df.pivot_table(index='Dataset', columns='Method', values='t_train').to_dict()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
qp.environ['SAMPLE_SIZE'] = 500
|
||||
qp.environ['N_JOBS'] = -1
|
||||
n_bags_val = 25
|
||||
n_bags_test = 100
|
||||
result_dir = f'results_quantification/ucimulti'
|
||||
|
||||
os.makedirs(result_dir, exist_ok=True)
|
||||
|
||||
global_result_path = f'{result_dir}/allmethods'
|
||||
timings = load_timings(global_result_path)
|
||||
with open(global_result_path + '.csv', 'wt') as csv:
|
||||
csv.write(f'Method\tDataset\tMAE\tMRAE\tt_train\n')
|
||||
|
||||
for method_name, quantifier, param_grid in METHODS + TRANSDUCTIVE_METHODS:
|
||||
|
||||
print('Init method', method_name)
|
||||
|
||||
with open(global_result_path + '.csv', 'at') as csv:
|
||||
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS[:4]:
|
||||
print('init', dataset)
|
||||
|
||||
local_result_path = os.path.join(Path(global_result_path).parent,
|
||||
method_name + '_' + dataset + '.dataframe')
|
||||
|
||||
if os.path.exists(local_result_path):
|
||||
print(f'result file {local_result_path} already exist; skipping')
|
||||
report = qp.util.load_report(local_result_path)
|
||||
|
||||
else:
|
||||
with qp.util.temp_seed(SEED):
|
||||
|
||||
data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True)
|
||||
|
||||
if not method_name.startswith("TKDEy-ML"):
|
||||
# model selection
|
||||
train, test = data.train_test
|
||||
train, val = train.split_stratified(random_state=SEED)
|
||||
|
||||
protocol = UPP(val, repeats=n_bags_val)
|
||||
modsel = GridSearchQ(
|
||||
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae'
|
||||
)
|
||||
|
||||
t_init = time()
|
||||
try:
|
||||
modsel.fit(train)
|
||||
|
||||
print(f'best params {modsel.best_params_}')
|
||||
print(f'best score {modsel.best_score_}')
|
||||
|
||||
quantifier = modsel.best_model()
|
||||
except:
|
||||
print('something went wrong... trying to fit the default model')
|
||||
quantifier.fit(train)
|
||||
timings[method_name][dataset] = time() - t_init
|
||||
|
||||
protocol = UPP(test, repeats=n_bags_test)
|
||||
report = qp.evaluation.evaluation_report(
|
||||
quantifier, protocol, error_metrics=['mae', 'mrae'], verbose=True
|
||||
)
|
||||
report.to_csv(local_result_path)
|
||||
else:
|
||||
# model selection
|
||||
train, test = data.train_test
|
||||
t_init = time()
|
||||
quantifier.fit(train)
|
||||
timings[method_name][dataset] = time() - t_init
|
||||
|
||||
protocol = UPP(test, repeats=n_bags_test)
|
||||
report = qp.evaluation.evaluation_report(
|
||||
quantifier, protocol, error_metrics=['mae', 'mrae'], verbose=True
|
||||
)
|
||||
report.to_csv(local_result_path)
|
||||
|
||||
means = report.mean(numeric_only=True)
|
||||
csv.write(
|
||||
f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\n')#\t{timings[method_name][dataset]:.3f}\n')
|
||||
csv.flush()
|
||||
|
||||
show_results(global_result_path)
|
|
@ -0,0 +1,81 @@
|
|||
import time
|
||||
from functools import wraps
|
||||
import os
|
||||
from os.path import join
|
||||
from result_table.src.table import Table
|
||||
import numpy as np
|
||||
from constants import *
|
||||
|
||||
def measuretime(func):
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
start_time = time.time()
|
||||
result = func(*args, **kwargs)
|
||||
end_time = time.time()
|
||||
time_it_took = end_time - start_time
|
||||
if isinstance(result, tuple):
|
||||
return (*result, time_it_took)
|
||||
else:
|
||||
return result, time_it_took
|
||||
return wrapper
|
||||
|
||||
|
||||
def plot_bandwidth(dataset_name, test_results, bandwidths, triplet_list_results):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
print("PLOT", dataset_name)
|
||||
print(dataset_name)
|
||||
|
||||
plt.figure(figsize=(8, 6))
|
||||
|
||||
# show test results
|
||||
plt.plot(bandwidths, test_results, marker='o', color='k')
|
||||
|
||||
colors = plt.cm.tab10(np.linspace(0, 1, len(triplet_list_results)))
|
||||
for i, (method_name, method_choice, method_time) in enumerate(triplet_list_results):
|
||||
plt.axvline(x=method_choice, linestyle='--', label=method_name, color=colors[i])
|
||||
|
||||
# Agregar etiquetas y título
|
||||
plt.xlabel('Bandwidth')
|
||||
plt.ylabel('MAE')
|
||||
plt.title(dataset_name)
|
||||
|
||||
# Mostrar la leyenda
|
||||
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
||||
|
||||
# Mostrar la gráfica
|
||||
plt.grid(True)
|
||||
|
||||
plotdir = './plots'
|
||||
if DEBUG:
|
||||
plotdir = './plots_debug'
|
||||
os.makedirs(plotdir, exist_ok=True)
|
||||
plt.tight_layout()
|
||||
plt.savefig(f'{plotdir}/{dataset_name}.png')
|
||||
plt.close()
|
||||
|
||||
def error_table(dataset_name, test_results, bandwidth_range, triplet_list_results):
|
||||
best_bandwidth = bandwidth_range[np.argmin(test_results)]
|
||||
best_score = np.min(test_results)
|
||||
print(f'Method\tChoice\tAE\tTime')
|
||||
table=Table(name=dataset_name)
|
||||
table.format.with_mean=False
|
||||
table.format.with_rank_mean = False
|
||||
table.format.show_std = False
|
||||
for method_name, method_choice, took in triplet_list_results:
|
||||
if method_choice in bandwidth_range:
|
||||
index = np.where(bandwidth_range == method_choice)[0][0]
|
||||
method_score = test_results[index]
|
||||
else:
|
||||
method_score = 1
|
||||
error = np.abs(best_score-method_score)
|
||||
table.add(benchmark='Choice', method=method_name, v=method_choice)
|
||||
table.add(benchmark='ScoreChoice', method=method_name, v=method_score)
|
||||
table.add(benchmark='Best', method=method_name, v=best_bandwidth)
|
||||
table.add(benchmark='ScoreBest', method=method_name, v=best_score)
|
||||
table.add(benchmark='AE', method=method_name, v=error)
|
||||
table.add(benchmark='Time', method=method_name, v=took)
|
||||
outpath = './tables'
|
||||
if DEBUG:
|
||||
outpath = './tables_debug'
|
||||
table.latexPDF(join(outpath, dataset_name+'.pdf'), transpose=True)
|
|
@ -14,7 +14,7 @@ from . import model_selection
|
|||
from . import classification
|
||||
import os
|
||||
|
||||
__version__ = '0.1.9'
|
||||
__version__ = '0.1.10'
|
||||
|
||||
environ = {
|
||||
'SAMPLE_SIZE': None,
|
||||
|
|
|
@ -3,6 +3,7 @@ from contextlib import contextmanager
|
|||
import zipfile
|
||||
from os.path import join
|
||||
import pandas as pd
|
||||
import sklearn.datasets
|
||||
from ucimlrepo import fetch_ucirepo
|
||||
from quapy.data.base import Dataset, LabelledCollection
|
||||
from quapy.data.preprocessing import text2tfidf, reduce_columns
|
||||
|
@ -1004,3 +1005,49 @@ def fetch_IFCB(single_sample_train=True, for_model_selection=False, data_home=No
|
|||
return train, test_gen
|
||||
else:
|
||||
return train_gen, test_gen
|
||||
|
||||
|
||||
def syntheticUniformLabelledCollection(n_samples, n_features, n_classes, n_clusters_per_class=1, **kwargs):
|
||||
"""
|
||||
Generates a synthetic labelled collection with uniform priors and
|
||||
of `n_samples` instances, `n_features` features, and `n_classes` classes.
|
||||
The underlying generator relies on the function
|
||||
`sklearn.datasets.make_classification`. Other options can be specified using the `kwargs`;
|
||||
see the `scikit-learn documentation
|
||||
<https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html>`_
|
||||
for a full list of optional parameters.
|
||||
|
||||
:param n_samples: number of instances
|
||||
:param n_features: number of features
|
||||
:param n_classes: number of classes
|
||||
"""
|
||||
X, y = sklearn.datasets.make_classification(
|
||||
n_samples=n_samples,
|
||||
n_features=n_features,
|
||||
n_classes=n_classes,
|
||||
n_clusters_per_class=n_clusters_per_class,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
return LabelledCollection(X, y)
|
||||
|
||||
def syntheticUniformDataset(n_samples, n_features, n_classes, test_split=0.3, **kwargs):
|
||||
"""
|
||||
Generates a synthetic Dataset with approximately uniform priors and
|
||||
of `n_samples` instances, `n_features` features, and `n_classes` classes.
|
||||
The underlying generator relies on the function
|
||||
`sklearn.datasets.make_classification`. Other options can be specified using the `kwargs`;
|
||||
see the `scikit-learn documentation
|
||||
<https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html>`_
|
||||
for a full list of optional parameters.
|
||||
|
||||
:param n_samples: number of instances
|
||||
:param n_features: number of features
|
||||
:param n_classes: number of classes
|
||||
:param test_split: proportion of test instances
|
||||
"""
|
||||
assert 0. < test_split < 1., "invalid proportion of test instances; the value must be in (0, 1)"
|
||||
lc = syntheticUniformLabelledCollection(n_samples, n_features, n_classes, **kwargs)
|
||||
training, test = lc.split_stratified(train_prop=1-test_split, random_state=kwargs.get('random_state', None))
|
||||
dataset = Dataset(training=training, test=test, name=f'synthetic(nF={n_features},nC={n_classes})')
|
||||
return dataset
|
|
@ -66,11 +66,13 @@ class KDEBase:
|
|||
"""
|
||||
class_cond_X = []
|
||||
for cat in classes:
|
||||
selX = X[y==cat]
|
||||
if selX.size==0:
|
||||
selX = X[y == cat]
|
||||
if selX.size == 0:
|
||||
selX = [F.uniform_prevalence(len(classes))]
|
||||
class_cond_X.append(selX)
|
||||
return [self.get_kde_function(X_cond_yi, bandwidth) for X_cond_yi in class_cond_X]
|
||||
if isinstance(bandwidth, float):
|
||||
bandwidth = np.full(fill_value=bandwidth, shape=(len(classes),))
|
||||
return [self.get_kde_function(X_cond_yi, band_i) for X_cond_yi, band_i in zip(class_cond_X, bandwidth)]
|
||||
|
||||
|
||||
class KDEyML(AggregativeSoftQuantifier, KDEBase):
|
||||
|
@ -188,7 +190,7 @@ class KDEyHD(AggregativeSoftQuantifier, KDEBase):
|
|||
|
||||
def __init__(self, classifier: BaseEstimator=None, val_split=5, divergence: str='HD',
|
||||
bandwidth=0.1, random_state=None, montecarlo_trials=10000):
|
||||
|
||||
|
||||
self.classifier = qp._get_classifier(classifier)
|
||||
self.val_split = val_split
|
||||
self.divergence = divergence
|
||||
|
@ -218,7 +220,7 @@ class KDEyHD(AggregativeSoftQuantifier, KDEBase):
|
|||
|
||||
def f_squared_hellinger(u):
|
||||
return (np.sqrt(u)-1)**2
|
||||
|
||||
|
||||
# todo: this will fail when self.divergence is a callable, and is not the right place to do it anyway
|
||||
if self.divergence.lower() == 'hd':
|
||||
f = f_squared_hellinger
|
||||
|
@ -283,7 +285,7 @@ class KDEyCS(AggregativeSoftQuantifier):
|
|||
|
||||
def gram_matrix_mix_sum(self, X, Y=None):
|
||||
# this adapts the output of the rbf_kernel function (pairwise evaluations of Gaussian kernels k(x,y))
|
||||
# to contain pairwise evaluations of N(x|mu,Sigma1+Sigma2) with mu=y and Sigma1 and Sigma2 are
|
||||
# to contain pairwise evaluations of N(x|mu,Sigma1+Sigma2) with mu=y and Sigma1 and Sigma2 are
|
||||
# two "scalar matrices" (h^2)*I each, so Sigma1+Sigma2 has scalar 2(h^2) (h is the bandwidth)
|
||||
h = self.bandwidth
|
||||
variance = 2 * (h**2)
|
||||
|
@ -342,7 +344,7 @@ class KDEyCS(AggregativeSoftQuantifier):
|
|||
# at each iteration of the optimization phase)
|
||||
tr_te_sums = np.zeros(shape=n, dtype=float)
|
||||
for i in range(n):
|
||||
tr_te_sums[i] = self.gram_matrix_mix_sum(Ptr[y==i], Pte)
|
||||
tr_te_sums[i] = self.gram_matrix_mix_sum(Ptr[y==i], Pte)
|
||||
|
||||
def divergence(alpha):
|
||||
# called \overline{r} in the paper
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
Subproject commit c223c9f1fe3c9708e8c5a5c56e438cdaaa857be4
|
Loading…
Reference in New Issue