New UCI multiclass datasets #1
|
@ -69,6 +69,9 @@ instance/
|
|||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# vscode config:
|
||||
.vscode/
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
|
|
|
@ -14,13 +14,18 @@ from quapy.util import download_file_if_not_exists, download_file, get_quapy_hom
|
|||
|
||||
|
||||
REVIEWS_SENTIMENT_DATASETS = ['hp', 'kindle', 'imdb']
|
||||
TWITTER_SENTIMENT_DATASETS_TEST = ['gasp', 'hcr', 'omd', 'sanders',
|
||||
TWITTER_SENTIMENT_DATASETS_TEST = [
|
||||
'gasp', 'hcr', 'omd', 'sanders',
|
||||
'semeval13', 'semeval14', 'semeval15', 'semeval16',
|
||||
'sst', 'wa', 'wb']
|
||||
TWITTER_SENTIMENT_DATASETS_TRAIN = ['gasp', 'hcr', 'omd', 'sanders',
|
||||
'sst', 'wa', 'wb',
|
||||
]
|
||||
TWITTER_SENTIMENT_DATASETS_TRAIN = [
|
||||
'gasp', 'hcr', 'omd', 'sanders',
|
||||
'semeval', 'semeval16',
|
||||
'sst', 'wa', 'wb']
|
||||
UCI_BINARY_DATASETS = ['acute.a', 'acute.b',
|
||||
'sst', 'wa', 'wb',
|
||||
]
|
||||
UCI_BINARY_DATASETS = [
|
||||
'acute.a', 'acute.b',
|
||||
'balance.1', 'balance.2', 'balance.3',
|
||||
'breast-cancer',
|
||||
'cmc.1', 'cmc.2', 'cmc.3',
|
||||
|
@ -41,14 +46,44 @@ UCI_BINARY_DATASETS = ['acute.a', 'acute.b',
|
|||
'transfusion',
|
||||
'wdbc',
|
||||
'wine.1', 'wine.2', 'wine.3',
|
||||
'wine-q-red', 'wine-q-white',
|
||||
'yeast']
|
||||
'wine-q-red',
|
||||
'wine-q-white',
|
||||
'yeast',
|
||||
]
|
||||
|
||||
UCI_MULTICLASS_DATASETS = ['dry-bean',
|
||||
UCI_MULTICLASS_DATASETS = [
|
||||
'dry-bean',
|
||||
'wine-quality',
|
||||
'academic-success',
|
||||
'digits',
|
||||
'letter']
|
||||
'letter',
|
||||
'abalone',
|
||||
'obesity',
|
||||
'covertype',
|
||||
'nursery',
|
||||
'diabetes',
|
||||
'yeast',
|
||||
'hand_digits',
|
||||
'satellite',
|
||||
'shuttle',
|
||||
'cmc',
|
||||
'isolet',
|
||||
'waveform.v1',
|
||||
'molecular',
|
||||
'poker_hand',
|
||||
'connect-4',
|
||||
'cardiotocography',
|
||||
'mhr',
|
||||
'chess2',
|
||||
'page_block',
|
||||
'room',
|
||||
'phishing2',
|
||||
'rt-iot22',
|
||||
'support2',
|
||||
'image_seg',
|
||||
'steel_plates',
|
||||
'hcv',
|
||||
]
|
||||
|
||||
LEQUA2022_TASKS = ['T1A', 'T1B', 'T2A', 'T2B']
|
||||
|
||||
|
@ -556,7 +591,7 @@ def fetch_UCIBinaryLabelledCollection(dataset_name, data_home=None, verbose=Fals
|
|||
return data
|
||||
|
||||
|
||||
def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, verbose=False) -> Dataset:
|
||||
def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, verbose=False, min_ipc=100) -> Dataset:
|
||||
"""
|
||||
Loads a UCI multiclass dataset as an instance of :class:`quapy.data.base.Dataset`.
|
||||
|
||||
|
@ -580,13 +615,15 @@ def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, ver
|
|||
~/quay_data/ directory)
|
||||
:param test_split: proportion of documents to be included in the test set. The rest conforms the training set
|
||||
:param verbose: set to True (default is False) to get information (stats) about the dataset
|
||||
:param min_ipc: minimum number of istances per class. Classes with less instances than min_ipc are discarded
|
||||
(deafult is 100)
|
||||
:return: a :class:`quapy.data.base.Dataset` instance
|
||||
"""
|
||||
data = fetch_UCIMulticlassLabelledCollection(dataset_name, data_home, verbose)
|
||||
data = fetch_UCIMulticlassLabelledCollection(dataset_name, data_home, verbose, min_ipc)
|
||||
return Dataset(*data.split_stratified(1 - test_split, random_state=0))
|
||||
|
||||
|
||||
def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=False) -> LabelledCollection:
|
||||
def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=False, min_ipc=100) -> LabelledCollection:
|
||||
"""
|
||||
Loads a UCI multiclass collection as an instance of :class:`quapy.data.base.LabelledCollection`.
|
||||
|
||||
|
@ -610,6 +647,8 @@ def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=
|
|||
~/quay_data/ directory)
|
||||
:param test_split: proportion of documents to be included in the test set. The rest conforms the training set
|
||||
:param verbose: set to True (default is False) to get information (stats) about the dataset
|
||||
:param min_ipc: minimum number of istances per class. Classes with less instances than min_ipc are discarded
|
||||
(deafult is 100)
|
||||
:return: a :class:`quapy.data.base.LabelledCollection` instance
|
||||
"""
|
||||
assert dataset_name in UCI_MULTICLASS_DATASETS, \
|
||||
|
@ -621,19 +660,71 @@ def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=
|
|||
data_home = get_quapy_home()
|
||||
|
||||
identifiers = {
|
||||
"dry-bean": 602,
|
||||
"wine-quality": 186,
|
||||
"academic-success": 697,
|
||||
"digits": 80,
|
||||
"letter": 59
|
||||
'dry-bean': 602,
|
||||
'wine-quality': 186,
|
||||
'academic-success': 697,
|
||||
'digits': 80,
|
||||
'letter': 59,
|
||||
'abalone': 1,
|
||||
'obesity': 544,
|
||||
'covertype': 31,
|
||||
'nursery': 76,
|
||||
'diabetes': 296,
|
||||
'yeast': 110,
|
||||
'hand_digits': 81,
|
||||
'satellite': 146,
|
||||
'shuttle': 148,
|
||||
'cmc': 30,
|
||||
'isolet': 54,
|
||||
'waveform.v1': 107,
|
||||
'molecular': 69,
|
||||
'poker_hand': 158,
|
||||
'connect-4': 26,
|
||||
'cardiotocography': 193,
|
||||
'mhr': 863,
|
||||
'chess2': 23,
|
||||
'page_block': 78,
|
||||
'room': 864,
|
||||
'phishing2': 379,
|
||||
'rt-iot22': 942,
|
||||
'support2': 880,
|
||||
'image_seg': 147,
|
||||
'steel_plates': 198,
|
||||
'hcv': 503,
|
||||
}
|
||||
|
||||
full_names = {
|
||||
"dry-bean": "Dry Bean Dataset",
|
||||
"wine-quality": "Wine Quality",
|
||||
"academic-success": "Predict students' dropout and academic success",
|
||||
"digits": "Optical Recognition of Handwritten Digits",
|
||||
"letter": "Letter Recognition"
|
||||
'dry-bean': 'Dry Bean Dataset',
|
||||
'wine-quality': 'Wine Quality',
|
||||
'academic-success': 'Predict students\' dropout and academic success',
|
||||
'digits': 'Optical Recognition of Handwritten Digits',
|
||||
'letter': 'Letter Recognition',
|
||||
'abalone': 'Abalone',
|
||||
'obesity': 'Estimation of Obesity Levels Based On Eating Habits and Physical Condition',
|
||||
'covertype': 'Covertype',
|
||||
'nursery': 'Nursery',
|
||||
'diabetes': 'Diabetes 130-US Hospitals for Years 1999-2008',
|
||||
'yeast': 'Yeast',
|
||||
'hand_digits': 'Pen-Based Recognition of Handwritten Digits',
|
||||
'satellite': 'Statlog Landsat Satellite',
|
||||
'shuttle': 'Statlog Shuttle',
|
||||
'cmc': 'Contraceptive Method Choice',
|
||||
'isolet': 'ISOLET',
|
||||
'waveform.v1': 'Waveform Database Generator (Version 1)',
|
||||
'molecular': 'Molecular Biology (Splice-junction Gene Sequences)',
|
||||
'poker_hand': 'Poker Hand',
|
||||
'connect-4': 'Connect-4',
|
||||
'cardiotocography': 'Cardiotocography',
|
||||
'mhr': 'Maternal Health Risk',
|
||||
'chess2': 'Chess (King-Rook vs. King)',
|
||||
'page_block': 'Page Blocks Classification',
|
||||
'room': 'Room Occupancy Estimation',
|
||||
'phishing2': 'Website Phishing',
|
||||
'rt-iot22': 'RT-IoT2022',
|
||||
'support2': 'SUPPORT2',
|
||||
'image_seg': 'Statlog (Image Segmentation)',
|
||||
'steel_plates': 'Steel Plates Faults',
|
||||
'hcv': 'Hepatitis C Virus (HCV) for Egyptian patients',
|
||||
}
|
||||
|
||||
identifier = identifiers[dataset_name]
|
||||
|
@ -644,14 +735,36 @@ def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=
|
|||
|
||||
file = join(data_home, 'uci_multiclass', dataset_name+'.pkl')
|
||||
|
||||
def download(id):
|
||||
def download(id, name):
|
||||
data = fetch_ucirepo(id=id)
|
||||
X, y = data['data']['features'].to_numpy(), data['data']['targets'].to_numpy().squeeze()
|
||||
# classes represented as arrays are transformed to tuples to treat them as signle objects
|
||||
if name == 'support2':
|
||||
y[:, 2] = np.fromiter((str(elm) for elm in y[:, 2]), dtype='object')
|
||||
if y.ndim > 1:
|
||||
y = np.fromiter((tuple(elm) for elm in y), dtype='object')
|
||||
classes = np.sort(np.unique(y))
|
||||
y = np.searchsorted(classes, y)
|
||||
return LabelledCollection(X, y)
|
||||
|
||||
data = pickled_resource(file, download, identifier)
|
||||
def filter_classes(data: LabelledCollection, min_ipc):
|
||||
classes = data.classes_
|
||||
# restrict classes to only those with at least min_ipc instances
|
||||
classes = classes[data.counts() >= min_ipc]
|
||||
# filter X and y keeping only datapoints belonging to valid classes
|
||||
filter_idx = np.in1d(data.y, classes)
|
||||
X, y = data.X[filter_idx], data.y[filter_idx]
|
||||
# map classes to range(len(classes))
|
||||
y = np.searchsorted(classes, y)
|
||||
return LabelledCollection(X, y)
|
||||
|
||||
data = pickled_resource(file, download, identifier, dataset_name)
|
||||
data = filter_classes(data, min_ipc)
|
||||
if data.n_classes <= 2:
|
||||
raise ValueError(
|
||||
f'Dataset {dataset_name} has too few valid classes to be multiclass with {min_ipc=}. '
|
||||
'Try a lower value for min_ipc.'
|
||||
)
|
||||
|
||||
if verbose:
|
||||
data.stats()
|
||||
|
|
Loading…
Reference in New Issue