import numpy import pytest from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC import quapy as qp from quapy.data import Dataset, LabelledCollection from quapy.method import AGGREGATIVE_METHODS, NON_AGGREGATIVE_METHODS, EXPLICIT_LOSS_MINIMIZATION_METHODS from quapy.method.meta import Ensemble datasets = [pytest.param(qp.datasets.fetch_twitter('hcr'), id='hcr'), pytest.param(qp.datasets.fetch_UCIDataset('ionosphere'), id='ionosphere')] learners = [LogisticRegression, LinearSVC] @pytest.mark.parametrize('dataset', datasets) @pytest.mark.parametrize('aggregative_method', AGGREGATIVE_METHODS.difference(EXPLICIT_LOSS_MINIMIZATION_METHODS)) @pytest.mark.parametrize('learner', learners) def test_aggregative_methods(dataset: Dataset, aggregative_method, learner): model = aggregative_method(learner()) if model.binary and not dataset.binary: print(f'skipping the test of binary model {model} on non-binary dataset {dataset}') return model.fit(dataset.training) estim_prevalences = model.quantify(dataset.test.instances) true_prevalences = dataset.test.prevalence() error = qp.error.mae(true_prevalences, estim_prevalences) assert type(error) == numpy.float64 @pytest.mark.parametrize('dataset', datasets) @pytest.mark.parametrize('elm_method', EXPLICIT_LOSS_MINIMIZATION_METHODS) def test_elm_methods(dataset: Dataset, elm_method): try: model = elm_method() except AssertionError as ae: if ae.args[0].find('does not seem to point to a valid path') > 0: print('Missing SVMperf binary program, skipping test') return if model.binary and not dataset.binary: print(f'skipping the test of binary model {model} on non-binary dataset {dataset}') return model.fit(dataset.training) estim_prevalences = model.quantify(dataset.test.instances) true_prevalences = dataset.test.prevalence() error = qp.error.mae(true_prevalences, estim_prevalences) assert type(error) == numpy.float64 @pytest.mark.parametrize('dataset', datasets) @pytest.mark.parametrize('non_aggregative_method', NON_AGGREGATIVE_METHODS) def test_non_aggregative_methods(dataset: Dataset, non_aggregative_method): model = non_aggregative_method() if model.binary and not dataset.binary: print(f'skipping the test of binary model {model} on non-binary dataset {dataset}') return model.fit(dataset.training) estim_prevalences = model.quantify(dataset.test.instances) true_prevalences = dataset.test.prevalence() error = qp.error.mae(true_prevalences, estim_prevalences) assert type(error) == numpy.float64 @pytest.mark.parametrize('base_method', AGGREGATIVE_METHODS.difference(EXPLICIT_LOSS_MINIMIZATION_METHODS)) @pytest.mark.parametrize('learner', learners) @pytest.mark.parametrize('dataset', datasets) @pytest.mark.parametrize('policy', Ensemble.VALID_POLICIES) def test_ensemble_method(base_method, learner, dataset: Dataset, policy): qp.environ['SAMPLE_SIZE'] = len(dataset.training) model = Ensemble(quantifier=base_method(learner()), size=5, policy=policy, n_jobs=-1) if model.binary and not dataset.binary: print(f'skipping the test of binary model {model} on non-binary dataset {dataset}') return model.fit(dataset.training) estim_prevalences = model.quantify(dataset.test.instances) true_prevalences = dataset.test.prevalence() error = qp.error.mae(true_prevalences, estim_prevalences) assert type(error) == numpy.float64 def test_quanet_method(): dataset = qp.datasets.fetch_reviews('kindle', pickle=True) dataset = Dataset(dataset.training.sampling(100, *dataset.training.prevalence()), dataset.test.sampling(100, *dataset.test.prevalence())) qp.data.preprocessing.index(dataset, min_df=5, inplace=True) from quapy.classification.neural import CNNnet cnn = CNNnet(dataset.vocabulary_size, dataset.training.n_classes) from quapy.classification.neural import NeuralClassifierTrainer learner = NeuralClassifierTrainer(cnn, device='cuda') from quapy.method.meta import QuaNet model = QuaNet(learner, sample_size=len(dataset.training), device='cuda') if model.binary and not dataset.binary: print(f'skipping the test of binary model {model} on non-binary dataset {dataset}') return model.fit(dataset.training) estim_prevalences = model.quantify(dataset.test.instances) true_prevalences = dataset.test.prevalence() error = qp.error.mae(true_prevalences, estim_prevalences) assert type(error) == numpy.float64 def models_to_test_for_str_label_names(): models = list() learner = LogisticRegression for method in AGGREGATIVE_METHODS.difference(EXPLICIT_LOSS_MINIMIZATION_METHODS): models.append(method(learner())) for method in NON_AGGREGATIVE_METHODS: models.append(method()) return models @pytest.mark.parametrize('model', models_to_test_for_str_label_names()) def test_str_label_names(model): dataset = qp.datasets.fetch_reviews('imdb', pickle=True) dataset = Dataset(dataset.training.sampling(1000, *dataset.training.prevalence()), dataset.test.sampling(1000, *dataset.test.prevalence())) qp.data.preprocessing.text2tfidf(dataset, min_df=5, inplace=True) model.fit(dataset.training) int_estim_prevalences = model.quantify(dataset.test.instances) true_prevalences = dataset.test.prevalence() error = qp.error.mae(true_prevalences, int_estim_prevalences) assert type(error) == numpy.float64 dataset_str = Dataset(LabelledCollection(dataset.training.instances, ['one' if label == 1 else 'zero' for label in dataset.training.labels]), LabelledCollection(dataset.test.instances, ['one' if label == 1 else 'zero' for label in dataset.test.labels])) model.fit(dataset_str.training) str_estim_prevalences = model.quantify(dataset_str.test.instances) true_prevalences = dataset_str.test.prevalence() error = qp.error.mae(true_prevalences, str_estim_prevalences) assert type(error) == numpy.float64 print(true_prevalences) print(int_estim_prevalences) print(str_estim_prevalences) numpy.testing.assert_almost_equal(int_estim_prevalences[1], str_estim_prevalences[list(model.classes_).index('one')])