import unittest import numpy as np from sklearn.linear_model import LogisticRegression import quapy as qp from quapy.method.aggregative import PACC from quapy.model_selection import GridSearchQ from quapy.protocol import APP import time class ModselTestCase(unittest.TestCase): def test_modsel(self): """ Checks whether a model selection exploration takes a good hyperparameter """ q = PACC(LogisticRegression(random_state=1, max_iter=5000)) data = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=10).reduce() training, validation = data.training.split_stratified(0.7, random_state=1) param_grid = {'classifier__C': [0.000001, 10.]} app = APP(validation, sample_size=100, random_state=1) q = GridSearchQ( q, param_grid, protocol=app, error='mae', refit=True, timeout=-1, verbose=True ).fit(training) print('best params', q.best_params_) print('best score', q.best_score_) self.assertEqual(q.best_params_['classifier__C'], 10.0) self.assertEqual(q.best_model().get_params()['classifier__C'], 10.0) def test_modsel_parallel(self): """ Checks whether a parallelized model selection actually is faster than a sequential exploration but obtains the same optimal parameters """ q = PACC(LogisticRegression(random_state=1, max_iter=5000)) data = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=10).reduce(n_train=500) training, validation = data.training.split_stratified(0.7, random_state=1) param_grid = {'classifier__C': np.logspace(-3,3,7)} app = APP(validation, sample_size=100, random_state=1) print('starting model selection in sequential exploration') tinit = time.time() modsel = GridSearchQ( q, param_grid, protocol=app, error='mae', refit=True, timeout=-1, n_jobs=1, verbose=True ).fit(training) tend_seq = time.time()-tinit best_c_seq = modsel.best_params_['classifier__C'] print(f'[done] took {tend_seq:.2f}s best C = {best_c_seq}') print('starting model selection in parallel exploration') tinit = time.time() modsel = GridSearchQ( q, param_grid, protocol=app, error='mae', refit=True, timeout=-1, n_jobs=-1, verbose=True ).fit(training) tend_par = time.time() - tinit best_c_par = modsel.best_params_['classifier__C'] print(f'[done] took {tend_par:.2f}s best C = {best_c_par}') self.assertEqual(best_c_seq, best_c_par) self.assertLess(tend_par, tend_seq) def test_modsel_timeout(self): class SlowLR(LogisticRegression): def fit(self, X, y, sample_weight=None): import time time.sleep(10) super(SlowLR, self).fit(X, y, sample_weight) q = PACC(SlowLR()) data = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=10).reduce() training, validation = data.training.split_stratified(0.7, random_state=1) param_grid = {'classifier__C': np.logspace(-1,1,3)} app = APP(validation, sample_size=100, random_state=1) print('Expecting TimeoutError to be raised') modsel = GridSearchQ( q, param_grid, protocol=app, timeout=3, n_jobs=-1, verbose=True, raise_errors=True ) with self.assertRaises(TimeoutError): modsel.fit(training) print('Expecting ValueError to be raised') modsel = GridSearchQ( q, param_grid, protocol=app, timeout=3, n_jobs=-1, verbose=True, raise_errors=False ) with self.assertRaises(ValueError): # this exception is not raised because of the timeout, but because no combination of hyperparams # succedded (in this case, a ValueError is raised, regardless of "raise_errors" modsel.fit(training) if __name__ == '__main__': unittest.main()