import unittest import numpy as np import quapy as qp from sklearn.linear_model import LogisticRegression from time import time from quapy.error import QUANTIFICATION_ERROR_SINGLE_NAMES from quapy.method.aggregative import EMQ, PCC from quapy.method.base import BaseQuantifier class EvalTestCase(unittest.TestCase): def test_eval_speedup(self): """ Checks whether the speed-up heuristics used by qp.evaluation work, i.e., actually save time """ data = qp.datasets.fetch_reviews('hp', tfidf=True, min_df=10, pickle=True) train, test = data.training, data.test protocol = qp.protocol.APP(test, sample_size=1000, n_prevalences=11, repeats=1, random_state=1) class SlowLR(LogisticRegression): def predict_proba(self, X): import time time.sleep(1) return super().predict_proba(X) emq = EMQ(SlowLR()).fit(train) tinit = time() score = qp.evaluation.evaluate(emq, protocol, error_metric='mae', verbose=True, aggr_speedup='force') tend_optim = time()-tinit print(f'evaluation (with optimization) took {tend_optim}s [MAE={score:.4f}]') class NonAggregativeEMQ(BaseQuantifier): def __init__(self, cls): self.emq = EMQ(cls) def quantify(self, instances): return self.emq.quantify(instances) def fit(self, data): self.emq.fit(data) return self emq = NonAggregativeEMQ(SlowLR()).fit(train) tinit = time() score = qp.evaluation.evaluate(emq, protocol, error_metric='mae', verbose=True) tend_no_optim = time() - tinit print(f'evaluation (w/o optimization) took {tend_no_optim}s [MAE={score:.4f}]') self.assertEqual(tend_no_optim>(tend_optim/2), True) def test_evaluation_output(self): """ Checks the evaluation functions return correct types for different error_metrics """ data = qp.datasets.fetch_reviews('hp', tfidf=True, min_df=10, pickle=True).reduce(n_train=100, n_test=100) train, test = data.training, data.test qp.environ['SAMPLE_SIZE']=100 protocol = qp.protocol.APP(test, random_state=0) q = PCC(LogisticRegression()).fit(train) single_errors = list(QUANTIFICATION_ERROR_SINGLE_NAMES) averaged_errors = ['m'+e for e in single_errors] single_errors = single_errors + [qp.error.from_name(e) for e in single_errors] averaged_errors = averaged_errors + [qp.error.from_name(e) for e in averaged_errors] for error_metric, averaged_error_metric in zip(single_errors, averaged_errors): score = qp.evaluation.evaluate(q, protocol, error_metric=averaged_error_metric) self.assertTrue(isinstance(score, float)) scores = qp.evaluation.evaluate(q, protocol, error_metric=error_metric) self.assertTrue(isinstance(scores, np.ndarray)) self.assertEqual(scores.mean(), score) if __name__ == '__main__': unittest.main()