import numpy as np from sklearn.linear_model import LogisticRegression import quapy as qp from quapy.method.aggregative import PACC from quapy.data import LabelledCollection from quapy.protocol import AbstractStochasticSeededProtocol import quapy.functional as F """ In this example, we create a custom protocol. The protocol generates samples of a Gaussian mixture model with random mixture parameter (the sample prevalence). Datapoints are univariate and we consider 2 classes only. """ class GaussianMixProtocol(AbstractStochasticSeededProtocol): # We need to extend AbstractStochasticSeededProtocol if we want the samples to be replicable def __init__(self, mu_1:float, std_1:float, mu_2:float, std_2:float, num_samples, sample_size, random_state=0): super(GaussianMixProtocol, self).__init__(random_state) # this sets the random state self.mu_1 = mu_1 self.std_1 = std_1 self.mu_2 = mu_2 self.std_2 = std_2 self.num_samples = num_samples self.sample_size = sample_size def samples_parameters(self): # This function is inherited and has to be overriden. # This function should return all the necessary parameters for producing the samples. # In this case, we consider returning a vector of seeds (one for each sample) and a vector of # randomly sampled prevalence values. # This function will be invoked within a context that sets the seed, so it will always return the # same parameters. In case you want different outcomes, then simply set random_state=None. rand_offset = np.random.randint(1000) sample_seeds = np.random.permutation(self.num_samples*2) + rand_offset random_prevs = np.random.rand(self.num_samples) params = np.hstack([sample_seeds.reshape(-1,2), random_prevs.reshape(-1,1)]) # each row in params contains two seeds (for generating the negatives and the positives, respectively) and # the prevalence vector return params def sample(self, params): # the params are two seeds and the positive prevalence of the sample seed0, seed1, pos_prev = params num_positives = int(pos_prev * self.sample_size) num_negatives = self.sample_size - num_positives with qp.util.temp_seed(int(seed0)): Xneg = np.random.normal(loc=self.mu_1, scale=self.std_1, size=num_negatives) with qp.util.temp_seed(int(seed1)): Xpos = np.random.normal(loc=self.mu_2, scale=self.std_2, size=num_positives) X = np.concatenate((Xneg,Xpos)) np.random.shuffle(X) X = X.reshape(-1,1) prev = F.as_binary_prevalence(pos_prev) return X, prev def total(self): # overriding this function will allow some methods display a meaningful progress bar return self.num_samples mu_1, std_1 = 0, 1 mu_2, std_2 = 1, 1 gm = GaussianMixProtocol(mu_1=mu_1, std_1=std_1, mu_2=mu_2, std_2=std_2, num_samples=10, sample_size=50) # let's see if the samples are replicated for i, (X, prev) in enumerate(gm()): if i>4: break print(f'sample-{i}: {F.strprev(prev)}, some covariates={X[:5].flatten()}...') print() for i, (X, prev) in enumerate(gm()): if i > 4: break print(f'sample-{i}: {F.strprev(prev)}, some covariates={X[:5].flatten()}...') # let's generate some training data # The samples are replicable, but by setting a temp seed we achieve repicable training as well with qp.util.temp_seed(0): Xneg = np.random.normal(loc=mu_1, scale=std_1, size=100) Xpos = np.random.normal(loc=mu_2, scale=std_2, size=100) X = np.concatenate([Xneg, Xpos]).reshape(-1,1) y = [0]*100 + [1]*100 training = LabelledCollection(X, y) pacc = PACC(LogisticRegression()) pacc.fit(training) mae = qp.evaluation.evaluate(pacc, protocol=gm, error_metric='mae', verbose=True) print(f'PACC MAE={mae:.5f}')