import numpy as np import matplotlib.pyplot as plt from scipy.stats import gaussian_kde def plot_prev_points(prevs, true_prev, point_estim, train_prev): plt.rcParams.update({ 'font.size': 10, # tamaño base de todo el texto 'axes.titlesize': 12, # título del eje 'axes.labelsize': 10, # etiquetas de ejes 'xtick.labelsize': 8, # etiquetas de ticks 'ytick.labelsize': 8, 'legend.fontsize': 9, # leyenda }) def cartesian(p): dim = p.shape[-1] p = p.reshape(-1,dim) x = p[:, 1] + p[:, 2] * 0.5 y = p[:, 2] * np.sqrt(3) / 2 return x, y # simplex coordinates v1 = np.array([0, 0]) v2 = np.array([1, 0]) v3 = np.array([0.5, np.sqrt(3)/2]) # Plot fig, ax = plt.subplots(figsize=(6, 6)) ax.scatter(*cartesian(prevs), s=10, alpha=0.5, edgecolors='none', label='samples') ax.scatter(*cartesian(prevs.mean(axis=0)), s=10, alpha=1, label='sample-mean', edgecolors='black') ax.scatter(*cartesian(true_prev), s=10, alpha=1, label='true-prev', edgecolors='black') ax.scatter(*cartesian(point_estim), s=10, alpha=1, label='KDEy-estim', edgecolors='black') ax.scatter(*cartesian(train_prev), s=10, alpha=1, label='train-prev', edgecolors='black') # edges triangle = np.array([v1, v2, v3, v1]) ax.plot(triangle[:, 0], triangle[:, 1], color='black') # vertex labels ax.text(-0.05, -0.05, "y=0", ha='right', va='top') ax.text(1.05, -0.05, "y=1", ha='left', va='top') ax.text(0.5, np.sqrt(3)/2 + 0.05, "y=2", ha='center', va='bottom') ax.set_aspect('equal') ax.axis('off') plt.legend( loc='center left', bbox_to_anchor=(1.05, 0.5), # ncol=3, # frameon=False ) plt.tight_layout() plt.show() def plot_prev_points_matplot(points): # project 2D v1 = np.array([0, 0]) v2 = np.array([1, 0]) v3 = np.array([0.5, np.sqrt(3) / 2]) x = points[:, 1] + points[:, 2] * 0.5 y = points[:, 2] * np.sqrt(3) / 2 # kde xy = np.vstack([x, y]) kde = gaussian_kde(xy, bw_method=0.25) xmin, xmax = 0, 1 ymin, ymax = 0, np.sqrt(3) / 2 # grid xx, yy = np.mgrid[xmin:xmax:200j, ymin:ymax:200j] positions = np.vstack([xx.ravel(), yy.ravel()]) zz = np.reshape(kde(positions).T, xx.shape) # mask points in simplex def in_triangle(x, y): return (y >= 0) & (y <= np.sqrt(3) * np.minimum(x, 1 - x)) mask = in_triangle(xx, yy) zz_masked = np.ma.array(zz, mask=~mask) # plot fig, ax = plt.subplots(figsize=(6, 6)) ax.imshow( np.rot90(zz_masked), cmap=plt.cm.viridis, extent=[xmin, xmax, ymin, ymax], alpha=0.8, ) # Bordes del triángulo triangle = np.array([v1, v2, v3, v1]) ax.plot(triangle[:, 0], triangle[:, 1], color='black', lw=2) # Puntos (opcional) ax.scatter(x, y, s=5, c='white', alpha=0.3) # Etiquetas ax.text(-0.05, -0.05, "A (1,0,0)", ha='right', va='top') ax.text(1.05, -0.05, "B (0,1,0)", ha='left', va='top') ax.text(0.5, np.sqrt(3) / 2 + 0.05, "C (0,0,1)", ha='center', va='bottom') ax.set_aspect('equal') ax.axis('off') plt.show() if __name__ == '__main__': n = 1000 points = np.random.dirichlet([2, 3, 4], size=n) plot_prev_points_matplot(points)