"""Implementation of error measures used for quantification""" import numpy as np from sklearn.metrics import f1_score import quapy as qp def from_name(err_name): """Gets an error function from its name. E.g., `from_name("mae")` will return function :meth:`quapy.error.mae` :param err_name: string, the error name :return: a callable implementing the requested error """ assert err_name in ERROR_NAMES, f'unknown error {err_name}' callable_error = globals()[err_name] return callable_error def f1e(y_true, y_pred): """F1 error: simply computes the error in terms of macro :math:`F_1`, i.e., :math:`1-F_1^M`, where :math:`F_1` is the harmonic mean of precision and recall, defined as :math:`\\frac{2tp}{2tp+fp+fn}`, with `tp`, `fp`, and `fn` standing for true positives, false positives, and false negatives, respectively. `Macro` averaging means the :math:`F_1` is computed for each category independently, and then averaged. :param y_true: array-like of true labels :param y_pred: array-like of predicted labels :return: :math:`1-F_1^M` """ return 1. - f1_score(y_true, y_pred, average='macro') def acce(y_true, y_pred): """Computes the error in terms of 1-accuracy. The accuracy is computed as :math:`\\frac{tp+tn}{tp+fp+fn+tn}`, with `tp`, `fp`, `fn`, and `tn` standing for true positives, false positives, false negatives, and true negatives, respectively :param y_true: array-like of true labels :param y_pred: array-like of predicted labels :return: 1-accuracy """ return 1. - (y_true == y_pred).mean() def mae(prevs, prevs_hat): """Computes the mean absolute error (see :meth:`quapy.error.ae`) across the sample pairs. :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted prevalence values :return: mean absolute error """ return ae(prevs, prevs_hat).mean() def ae(prevs, prevs_hat): """Computes the absolute error between the two prevalence vectors. Absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}` is computed as :math:`AE(p,\\hat{p})=\\frac{1}{|\\mathcal{Y}|}\\sum_{y\\in \\mathcal{Y}}|\\hat{p}(y)-p(y)|`, where :math:`\\mathcal{Y}` are the classes of interest. :param prevs: array-like of shape `(n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values :return: absolute error """ assert prevs.shape == prevs_hat.shape, f'wrong shape {prevs.shape} vs. {prevs_hat.shape}' return abs(prevs_hat - prevs).mean(axis=-1) def nae(prevs, prevs_hat): """Computes the normalized absolute error between the two prevalence vectors. Normalized absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}` is computed as :math:`NAE(p,\\hat{p})=\\frac{AE(p,\\hat{p})}{z_{AE}}`, where :math:`z_{AE}=\\frac{2(1-\\min_{y\\in \\mathcal{Y}} p(y))}{|\\mathcal{Y}|}`, and :math:`\\mathcal{Y}` are the classes of interest. :param prevs: array-like of shape `(n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values :return: normalized absolute error """ assert prevs.shape == prevs_hat.shape, f'wrong shape {prevs.shape} vs. {prevs_hat.shape}' return abs(prevs_hat - prevs).sum(axis=-1)/(2*(1-prevs.min(axis=-1))) def mnae(prevs, prevs_hat): """Computes the mean normalized absolute error (see :meth:`quapy.error.nae`) across the sample pairs. :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted prevalence values :return: mean normalized absolute error """ return nae(prevs, prevs_hat).mean() def mse(prevs, prevs_hat): """Computes the mean squared error (see :meth:`quapy.error.se`) across the sample pairs. :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted prevalence values :return: mean squared error """ return se(prevs, prevs_hat).mean() def se(prevs, prevs_hat): """Computes the squared error between the two prevalence vectors. Squared error between two prevalence vectors :math:`p` and :math:`\\hat{p}` is computed as :math:`SE(p,\\hat{p})=\\frac{1}{|\\mathcal{Y}|}\\sum_{y\\in \\mathcal{Y}}(\\hat{p}(y)-p(y))^2`, where :math:`\\mathcal{Y}` are the classes of interest. :param prevs: array-like of shape `(n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values :return: absolute error """ return ((prevs_hat - prevs) ** 2).mean(axis=-1) def mkld(prevs, prevs_hat, eps=None): """Computes the mean Kullback-Leibler divergence (see :meth:`quapy.error.kld`) across the sample pairs. The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`). :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted prevalence values :param eps: smoothing factor. KLD is not defined in cases in which the distributions contain zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand). :return: mean Kullback-Leibler distribution """ return kld(prevs, prevs_hat, eps).mean() def kld(prevs, prevs_hat, eps=None): """Computes the Kullback-Leibler divergence between the two prevalence distributions. Kullback-Leibler divergence between two prevalence distributions :math:`p` and :math:`\\hat{p}` is computed as :math:`KLD(p,\\hat{p})=D_{KL}(p||\\hat{p})= \\sum_{y\\in \\mathcal{Y}} p(y)\\log\\frac{p(y)}{\\hat{p}(y)}`, where :math:`\\mathcal{Y}` are the classes of interest. The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`). :param prevs: array-like of shape `(n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values :param eps: smoothing factor. KLD is not defined in cases in which the distributions contain zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand). :return: Kullback-Leibler divergence between the two distributions """ eps = __check_eps(eps) smooth_prevs = smooth(prevs, eps) smooth_prevs_hat = smooth(prevs_hat, eps) return (smooth_prevs*np.log(smooth_prevs/smooth_prevs_hat)).sum(axis=-1) def mnkld(prevs, prevs_hat, eps=None): """Computes the mean Normalized Kullback-Leibler divergence (see :meth:`quapy.error.nkld`) across the sample pairs. The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`). :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted prevalence values :param eps: smoothing factor. NKLD is not defined in cases in which the distributions contain zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand). :return: mean Normalized Kullback-Leibler distribution """ return nkld(prevs, prevs_hat, eps).mean() def nkld(prevs, prevs_hat, eps=None): """Computes the Normalized Kullback-Leibler divergence between the two prevalence distributions. Normalized Kullback-Leibler divergence between two prevalence distributions :math:`p` and :math:`\\hat{p}` is computed as math:`NKLD(p,\\hat{p}) = 2\\frac{e^{KLD(p,\\hat{p})}}{e^{KLD(p,\\hat{p})}+1}-1`, where :math:`\\mathcal{Y}` are the classes of interest. The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`). :param prevs: array-like of shape `(n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values :param eps: smoothing factor. NKLD is not defined in cases in which the distributions contain zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand). :return: Normalized Kullback-Leibler divergence between the two distributions """ ekld = np.exp(kld(prevs, prevs_hat, eps)) return 2. * ekld / (1 + ekld) - 1. def mrae(prevs, prevs_hat, eps=None): """Computes the mean relative absolute error (see :meth:`quapy.error.rae`) across the sample pairs. The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`). :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted prevalence values :param eps: smoothing factor. `mrae` is not defined in cases in which the true distribution contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand). :return: mean relative absolute error """ return rae(prevs, prevs_hat, eps).mean() def rae(prevs, prevs_hat, eps=None): """Computes the absolute relative error between the two prevalence vectors. Relative absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}` is computed as :math:`RAE(p,\\hat{p})= \\frac{1}{|\\mathcal{Y}|}\\sum_{y\\in \\mathcal{Y}}\\frac{|\\hat{p}(y)-p(y)|}{p(y)}`, where :math:`\\mathcal{Y}` are the classes of interest. The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`). :param prevs: array-like of shape `(n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values :param eps: smoothing factor. `rae` is not defined in cases in which the true distribution contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand). :return: relative absolute error """ eps = __check_eps(eps) prevs = smooth(prevs, eps) prevs_hat = smooth(prevs_hat, eps) return (abs(prevs - prevs_hat) / prevs).mean(axis=-1) def nrae(prevs, prevs_hat, eps=None): """Computes the normalized absolute relative error between the two prevalence vectors. Relative absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}` is computed as :math:`NRAE(p,\\hat{p})= \\frac{RAE(p,\\hat{p})}{z_{RAE}}`, where :math:`z_{RAE} = \\frac{|\\mathcal{Y}|-1+\\frac{1-\\min_{y\\in \\mathcal{Y}} p(y)}{\\min_{y\\in \\mathcal{Y}} p(y)}}{|\\mathcal{Y}|}` and :math:`\\mathcal{Y}` are the classes of interest. The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`). :param prevs: array-like of shape `(n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values :param eps: smoothing factor. `nrae` is not defined in cases in which the true distribution contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand). :return: normalized relative absolute error """ eps = __check_eps(eps) prevs = smooth(prevs, eps) prevs_hat = smooth(prevs_hat, eps) min_p = prevs.min(axis=-1) return (abs(prevs - prevs_hat) / prevs).sum(axis=-1)/(prevs.shape[-1]-1+(1-min_p)/min_p) def mnrae(prevs, prevs_hat, eps=None): """Computes the mean normalized relative absolute error (see :meth:`quapy.error.nrae`) across the sample pairs. The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`). :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted prevalence values :param eps: smoothing factor. `mnrae` is not defined in cases in which the true distribution contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand). :return: mean normalized relative absolute error """ return nrae(prevs, prevs_hat, eps).mean() def nmd(prevs, prevs_hat): """ Computes the Normalized Match Distance; which is the Normalized Distance multiplied by the factor `1/(n-1)` to guarantee the measure ranges between 0 (best prediction) and 1 (worst prediction). :param prevs: array-like of shape `(n_classes,)` or `(n_instances, n_classes)` with the true prevalence values :param prevs_hat: array-like of shape `(n_classes,)` or `(n_instances, n_classes)` with the predicted prevalence values :return: float in [0,1] """ n = prevs.shape[-1] return (1./(n-1))*np.mean(match_distance(prevs, prevs_hat)) def md(prevs, prevs_hat, ERROR_TOL=1E-3): """ Computes the Match Distance, under the assumption that the cost in mistaking class i with class i+1 is 1 in all cases. :param prevs: array-like of shape `(n_classes,)` or `(n_instances, n_classes)` with the true prevalence values :param prevs_hat: array-like of shape `(n_classes,)` or `(n_instances, n_classes)` with the predicted prevalence values :return: float """ P = np.cumsum(prevs, axis=-1) P_hat = np.cumsum(prevs_hat, axis=-1) assert np.all(np.isclose(P_hat[..., -1], 1.0, rtol=ERROR_TOL)), \ 'arg error in match_distance: the array does not represent a valid distribution' distances = np.abs(P-P_hat) return distances[..., :-1].sum(axis=-1) def smooth(prevs, eps): """ Smooths a prevalence distribution with :math:`\\epsilon` (`eps`) as: :math:`\\underline{p}(y)=\\frac{\\epsilon+p(y)}{\\epsilon|\\mathcal{Y}|+ \\displaystyle\\sum_{y\\in \\mathcal{Y}}p(y)}` :param prevs: array-like of shape `(n_classes,)` with the true prevalence values :param eps: smoothing factor :return: array-like of shape `(n_classes,)` with the smoothed distribution """ n_classes = prevs.shape[-1] return (prevs + eps) / (eps * n_classes + 1) def __check_eps(eps=None): if eps is None: sample_size = qp.environ['SAMPLE_SIZE'] if sample_size is None: raise ValueError('eps was not defined, and qp.environ["SAMPLE_SIZE"] was not set') eps = 1. / (2. * sample_size) return eps CLASSIFICATION_ERROR = {f1e, acce} QUANTIFICATION_ERROR = {mae, mnae, mrae, mnrae, mse, mkld, mnkld} QUANTIFICATION_ERROR_SINGLE = {ae, nae, rae, nrae, se, kld, nkld} QUANTIFICATION_ERROR_SMOOTH = {kld, nkld, rae, nrae, mkld, mnkld, mrae} CLASSIFICATION_ERROR_NAMES = {func.__name__ for func in CLASSIFICATION_ERROR} QUANTIFICATION_ERROR_NAMES = {func.__name__ for func in QUANTIFICATION_ERROR} QUANTIFICATION_ERROR_SINGLE_NAMES = {func.__name__ for func in QUANTIFICATION_ERROR_SINGLE} QUANTIFICATION_ERROR_SMOOTH_NAMES = {func.__name__ for func in QUANTIFICATION_ERROR_SMOOTH} ERROR_NAMES = \ CLASSIFICATION_ERROR_NAMES | QUANTIFICATION_ERROR_NAMES | QUANTIFICATION_ERROR_SINGLE_NAMES f1_error = f1e acc_error = acce mean_absolute_error = mae absolute_error = ae mean_relative_absolute_error = mrae relative_absolute_error = rae normalized_absolute_error = nae normalized_relative_absolute_error = nrae mean_normalized_absolute_error = mnae mean_normalized_relative_absolute_error = mnrae normalized_match_distance = nmd match_distance = md