109 lines
4.4 KiB
Python
109 lines
4.4 KiB
Python
import argparse
|
|
import pickle
|
|
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.linear_model import LogisticRegression as LR
|
|
from quapy.method.aggregative import *
|
|
from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE
|
|
import quapy.functional as F
|
|
from data import *
|
|
import os
|
|
import constants
|
|
|
|
|
|
# LeQua official baselines for task T1A (Binary/Vector) and T1B (Multiclass/Vector)
|
|
# =========================================================
|
|
|
|
def baselines():
|
|
yield CC(LR(n_jobs=-1)), "CC"
|
|
# yield ACC(LR(n_jobs=-1)), "ACC"
|
|
# yield PCC(LR(n_jobs=-1)), "PCC"
|
|
yield PACC(LR(n_jobs=-1)), "PACC"
|
|
yield EMQ(CalibratedClassifierCV(LR(), n_jobs=-1)), "SLD"
|
|
# yield HDy(LR(n_jobs=-1)) if args.task == 'T1A' else OneVsAll(HDy(LR()), n_jobs=-1), "HDy"
|
|
# yield MLPE(), "MLPE"
|
|
|
|
|
|
def main(args):
|
|
|
|
models_path = qp.util.create_if_not_exist(os.path.join(args.modeldir, args.task))
|
|
|
|
path_dev_vectors = os.path.join(args.datadir, 'dev_samples')
|
|
path_dev_prevs = os.path.join(args.datadir, 'dev_prevalences.txt')
|
|
path_train = os.path.join(args.datadir, 'training_data.txt')
|
|
|
|
qp.environ['SAMPLE_SIZE'] = constants.SAMPLE_SIZE[args.task]
|
|
|
|
if args.task in {'T1A', 'T1B'}:
|
|
train = LabelledCollection.load(path_train, load_vector_documents)
|
|
|
|
def gen_samples():
|
|
return gen_load_samples(path_dev_vectors, ground_truth_path=path_dev_prevs, load_fn=load_vector_documents)
|
|
else:
|
|
train = LabelledCollection.load(path_train, load_raw_documents)
|
|
tfidf = TfidfVectorizer(min_df=5, sublinear_tf=True, ngram_range=(1, 2))
|
|
train.instances = tfidf.fit_transform(*train.Xy)
|
|
|
|
def gen_samples():
|
|
return gen_load_samples(path_dev_vectors, ground_truth_path=path_dev_prevs,
|
|
load_fn=load_raw_documents, vectorizer=tfidf)
|
|
|
|
print(f'number of classes: {len(train.classes_)}')
|
|
print(f'number of training documents: {len(train)}')
|
|
print(f'training prevalence: {F.strprev(train.prevalence())}')
|
|
print(f'training matrix shape: {train.instances.shape}')
|
|
|
|
param_grid = {
|
|
'C': np.logspace(-3, 3, 7),
|
|
'class_weight': ['balanced', None]
|
|
}
|
|
|
|
param_grid = {
|
|
'C': [0.01],
|
|
'class_weight': ['balanced']
|
|
}
|
|
|
|
for quantifier, q_name in baselines():
|
|
print(f'{q_name}: Model selection')
|
|
quantifier = qp.model_selection.GridSearchQ(
|
|
quantifier,
|
|
param_grid,
|
|
sample_size=None,
|
|
protocol='gen',
|
|
error=qp.error.mrae,
|
|
refit=False,
|
|
verbose=True
|
|
).fit(train, gen_samples)
|
|
|
|
print(f'{q_name} got MRAE={quantifier.best_score_:.5f} (hyper-params: {quantifier.best_params_})')
|
|
|
|
model_path = os.path.join(models_path, q_name+'.pkl')
|
|
print(f'saving model in {model_path}')
|
|
pickle.dump(quantifier.best_model(), open(model_path, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='LeQua2022 baselines')
|
|
parser.add_argument('task', metavar='TASK', type=str, choices=['T1A', 'T1B', 'T2A', 'T2B'],
|
|
help='Task name (T1A, T1B, T2A, T2B)')
|
|
parser.add_argument('datadir', metavar='DATA-PATH', type=str,
|
|
help='Path of the directory containing "dev_prevalences.txt", "training_data.txt", and '
|
|
'the directory "dev_samples"')
|
|
parser.add_argument('modeldir', metavar='MODEL-PATH', type=str,
|
|
help='Path where to save the models. '
|
|
'A subdirectory named <task> will be automatically created.')
|
|
args = parser.parse_args()
|
|
|
|
if not os.path.exists(args.datadir):
|
|
raise FileNotFoundError(f'path {args.datadir} does not exist')
|
|
if not os.path.isdir(args.datadir):
|
|
raise ValueError(f'path {args.datadir} is not a valid directory')
|
|
if not os.path.exists(os.path.join(args.datadir, "dev_prevalences.txt")):
|
|
raise FileNotFoundError(f'path {args.datadir} does not contain "dev_prevalences.txt" file')
|
|
if not os.path.exists(os.path.join(args.datadir, "training_data.txt")):
|
|
raise FileNotFoundError(f'path {args.datadir} does not contain "training_data.txt" file')
|
|
if not os.path.exists(os.path.join(args.datadir, "dev_samples")):
|
|
raise FileNotFoundError(f'path {args.datadir} does not contain "dev_samples" folder')
|
|
|
|
main(args)
|