113 lines
3.7 KiB
Python
113 lines
3.7 KiB
Python
import pickle
|
|
import os
|
|
|
|
import numpy as np
|
|
from sklearn.linear_model import LogisticRegression
|
|
|
|
import quapy as qp
|
|
from quapy.method.aggregative import PACC, EMQ, KDEyML
|
|
from quapy.model_selection import GridSearchQ
|
|
from quapy.protocol import UPP
|
|
from pathlib import Path
|
|
|
|
|
|
SEED = 1
|
|
|
|
|
|
def newLR():
|
|
return LogisticRegression(max_iter=3000)
|
|
|
|
# typical hyperparameters explored for Logistic Regression
|
|
logreg_grid = {
|
|
'C': np.logspace(-3, 3, 7),
|
|
'class_weight': ['balanced', None]
|
|
}
|
|
|
|
def wrap_hyper(classifier_hyper_grid:dict):
|
|
return {'classifier__'+k:v for k, v in classifier_hyper_grid.items()}
|
|
|
|
METHODS = [
|
|
('PACC', PACC(newLR()), wrap_hyper(logreg_grid)),
|
|
('EMQ', EMQ(newLR()), wrap_hyper(logreg_grid)),
|
|
('KDEy-ML', KDEyML(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.linspace(0.01, 0.2, 20)}}),
|
|
]
|
|
|
|
|
|
def show_results(result_path):
|
|
import pandas as pd
|
|
df = pd.read_csv(result_path+'.csv', sep='\t')
|
|
pd.set_option('display.max_columns', None)
|
|
pd.set_option('display.max_rows', None)
|
|
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE"], margins=True)
|
|
print(pv)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
qp.environ['SAMPLE_SIZE'] = 500
|
|
qp.environ['N_JOBS'] = -1
|
|
n_bags_val = 250
|
|
n_bags_test = 1000
|
|
result_dir = f'results/ucimulti'
|
|
|
|
os.makedirs(result_dir, exist_ok=True)
|
|
|
|
global_result_path = f'{result_dir}/allmethods'
|
|
with open(global_result_path + '.csv', 'wt') as csv:
|
|
csv.write(f'Method\tDataset\tMAE\tMRAE\n')
|
|
|
|
for method_name, quantifier, param_grid in METHODS:
|
|
|
|
print('Init method', method_name)
|
|
|
|
with open(global_result_path + '.csv', 'at') as csv:
|
|
|
|
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS[:5]:
|
|
|
|
if dataset in ['covertype', 'diabetes']:
|
|
continue
|
|
|
|
print('init', dataset)
|
|
|
|
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
|
|
|
|
if os.path.exists(local_result_path):
|
|
print(f'result file {local_result_path} already exist; skipping')
|
|
report = qp.util.load_report(local_result_path)
|
|
|
|
else:
|
|
with qp.util.temp_seed(SEED):
|
|
|
|
data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True)
|
|
|
|
# model selection
|
|
train, test = data.train_test
|
|
train, val = train.split_stratified(random_state=SEED)
|
|
|
|
protocol = UPP(val, repeats=n_bags_val)
|
|
modsel = GridSearchQ(
|
|
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae'
|
|
)
|
|
|
|
try:
|
|
modsel.fit(train)
|
|
|
|
print(f'best params {modsel.best_params_}')
|
|
print(f'best score {modsel.best_score_}')
|
|
|
|
quantifier = modsel.best_model()
|
|
except:
|
|
print('something went wrong... trying to fit the default model')
|
|
quantifier.fit(train)
|
|
|
|
protocol = UPP(test, repeats=n_bags_test)
|
|
report = qp.evaluation.evaluation_report(
|
|
quantifier, protocol, error_metrics=['mae', 'mrae'], verbose=True
|
|
)
|
|
report.to_csv(local_result_path)
|
|
|
|
means = report.mean()
|
|
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\n')
|
|
csv.flush()
|
|
|
|
show_results(global_result_path) |