QuaPy/quapy/classification/calibration.py

217 lines
10 KiB
Python

from copy import deepcopy
from abstention.calibration import NoBiasVectorScaling, TempScaling, VectorScaling
from sklearn.base import BaseEstimator, clone
from sklearn.model_selection import cross_val_predict, train_test_split
import numpy as np
# Wrappers of calibration defined by Alexandari et al. in paper <http://proceedings.mlr.press/v119/alexandari20a.html>
# requires "pip install abstension"
# see https://github.com/kundajelab/abstention
class RecalibratedProbabilisticClassifier:
"""
Abstract class for (re)calibration method from `abstention.calibration`, as defined in
`Alexandari, A., Kundaje, A., & Shrikumar, A. (2020, November). Maximum likelihood with bias-corrected calibration
is hard-to-beat at label shift adaptation. In International Conference on Machine Learning (pp. 222-232). PMLR.
<http://proceedings.mlr.press/v119/alexandari20a.html>`_:
"""
pass
class RecalibratedProbabilisticClassifierBase(BaseEstimator, RecalibratedProbabilisticClassifier):
"""
Applies a (re)calibration method from `abstention.calibration`, as defined in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_.
:param classifier: a scikit-learn probabilistic classifier
:param calibrator: the calibration object (an instance of abstention.calibration.CalibratorFactory)
:param val_split: indicate an integer k for performing kFCV to obtain the posterior probabilities, or a float p
in (0,1) to indicate that the posteriors are obtained in a stratified validation split containing p% of the
training instances (the rest is used for training). In any case, the classifier is retrained in the whole
training set afterwards. Default value is 5.
:param n_jobs: indicate the number of parallel workers (only when val_split is an integer); default=None
:param verbose: whether or not to display information in the standard output
"""
def __init__(self, classifier, calibrator, val_split=5, n_jobs=None, verbose=False):
self.classifier = classifier
self.calibrator = calibrator
self.val_split = val_split
self.n_jobs = n_jobs
self.verbose = verbose
def fit(self, X, y):
"""
Fits the calibration for the probabilistic classifier.
:param X: array-like of shape `(n_samples, n_features)` with the data instances
:param y: array-like of shape `(n_samples,)` with the class labels
:return: self
"""
k = self.val_split
if isinstance(k, int):
if k < 2:
raise ValueError('wrong value for val_split: the number of folds must be > 2')
return self.fit_cv(X, y)
elif isinstance(k, float):
if not (0 < k < 1):
raise ValueError('wrong value for val_split: the proportion of validation documents must be in (0,1)')
return self.fit_tr_val(X, y)
def fit_cv(self, X, y):
"""
Fits the calibration in a cross-validation manner, i.e., it generates posterior probabilities for all
training instances via cross-validation, and then retrains the classifier on all training instances.
The posterior probabilities thus generated are used for calibrating the outputs of the classifier.
:param X: array-like of shape `(n_samples, n_features)` with the data instances
:param y: array-like of shape `(n_samples,)` with the class labels
:return: self
"""
posteriors = cross_val_predict(
self.classifier, X, y, cv=self.val_split, n_jobs=self.n_jobs, verbose=self.verbose, method='predict_proba'
)
self.classifier.fit(X, y)
nclasses = len(np.unique(y))
self.calibration_function = self.calibrator(posteriors, np.eye(nclasses)[y], posterior_supplied=True)
return self
def fit_tr_val(self, X, y):
"""
Fits the calibration in a train/val-split manner, i.e.t, it partitions the training instances into a
training and a validation set, and then uses the training samples to learn classifier which is then used
to generate posterior probabilities for the held-out validation data. These posteriors are used to calibrate
the classifier. The classifier is not retrained on the whole dataset.
:param X: array-like of shape `(n_samples, n_features)` with the data instances
:param y: array-like of shape `(n_samples,)` with the class labels
:return: self
"""
Xtr, Xva, ytr, yva = train_test_split(X, y, test_size=self.val_split, stratify=y)
self.classifier.fit(Xtr, ytr)
posteriors = self.classifier.predict_proba(Xva)
nclasses = len(np.unique(yva))
self.calibration_function = self.calibrator(posteriors, np.eye(nclasses)[yva], posterior_supplied=True)
return self
def predict(self, X):
"""
Predicts class labels for the data instances in `X`
:param X: array-like of shape `(n_samples, n_features)` with the data instances
:return: array-like of shape `(n_samples,)` with the class label predictions
"""
return self.classifier.predict(X)
def predict_proba(self, X):
"""
Generates posterior probabilities for the data instances in `X`
:param X: array-like of shape `(n_samples, n_features)` with the data instances
:return: array-like of shape `(n_samples, n_classes)` with posterior probabilities
"""
posteriors = self.classifier.predict_proba(X)
return self.calibration_function(posteriors)
@property
def classes_(self):
"""
Returns the classes on which the classifier has been trained on
:return: array-like of shape `(n_classes)`
"""
return self.classifier.classes_
class NBVSCalibration(RecalibratedProbabilisticClassifierBase):
"""
Applies the No-Bias Vector Scaling (NBVS) calibration method from `abstention.calibration`, as defined in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
:param classifier: a scikit-learn probabilistic classifier
:param val_split: indicate an integer k for performing kFCV to obtain the posterior prevalences, or a float p
in (0,1) to indicate that the posteriors are obtained in a stratified validation split containing p% of the
training instances (the rest is used for training). In any case, the classifier is retrained in the whole
training set afterwards. Default value is 5.
:param n_jobs: indicate the number of parallel workers (only when val_split is an integer)
:param verbose: whether or not to display information in the standard output
"""
def __init__(self, classifier, val_split=5, n_jobs=None, verbose=False):
self.classifier = classifier
self.calibrator = NoBiasVectorScaling(verbose=verbose)
self.val_split = val_split
self.n_jobs = n_jobs
self.verbose = verbose
class BCTSCalibration(RecalibratedProbabilisticClassifierBase):
"""
Applies the Bias-Corrected Temperature Scaling (BCTS) calibration method from `abstention.calibration`, as defined in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
:param classifier: a scikit-learn probabilistic classifier
:param val_split: indicate an integer k for performing kFCV to obtain the posterior prevalences, or a float p
in (0,1) to indicate that the posteriors are obtained in a stratified validation split containing p% of the
training instances (the rest is used for training). In any case, the classifier is retrained in the whole
training set afterwards. Default value is 5.
:param n_jobs: indicate the number of parallel workers (only when val_split is an integer)
:param verbose: whether or not to display information in the standard output
"""
def __init__(self, classifier, val_split=5, n_jobs=None, verbose=False):
self.classifier = classifier
self.calibrator = TempScaling(verbose=verbose, bias_positions='all')
self.val_split = val_split
self.n_jobs = n_jobs
self.verbose = verbose
class TSCalibration(RecalibratedProbabilisticClassifierBase):
"""
Applies the Temperature Scaling (TS) calibration method from `abstention.calibration`, as defined in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
:param classifier: a scikit-learn probabilistic classifier
:param val_split: indicate an integer k for performing kFCV to obtain the posterior prevalences, or a float p
in (0,1) to indicate that the posteriors are obtained in a stratified validation split containing p% of the
training instances (the rest is used for training). In any case, the classifier is retrained in the whole
training set afterwards. Default value is 5.
:param n_jobs: indicate the number of parallel workers (only when val_split is an integer)
:param verbose: whether or not to display information in the standard output
"""
def __init__(self, classifier, val_split=5, n_jobs=None, verbose=False):
self.classifier = classifier
self.calibrator = TempScaling(verbose=verbose)
self.val_split = val_split
self.n_jobs = n_jobs
self.verbose = verbose
class VSCalibration(RecalibratedProbabilisticClassifierBase):
"""
Applies the Vector Scaling (VS) calibration method from `abstention.calibration`, as defined in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
:param classifier: a scikit-learn probabilistic classifier
:param val_split: indicate an integer k for performing kFCV to obtain the posterior prevalences, or a float p
in (0,1) to indicate that the posteriors are obtained in a stratified validation split containing p% of the
training instances (the rest is used for training). In any case, the classifier is retrained in the whole
training set afterwards. Default value is 5.
:param n_jobs: indicate the number of parallel workers (only when val_split is an integer)
:param verbose: whether or not to display information in the standard output
"""
def __init__(self, classifier, val_split=5, n_jobs=None, verbose=False):
self.classifier = classifier
self.calibrator = VectorScaling(verbose=verbose)
self.val_split = val_split
self.n_jobs = n_jobs
self.verbose = verbose