39 lines
1.2 KiB
Python
39 lines
1.2 KiB
Python
import pickle
|
|
import os
|
|
import sys
|
|
|
|
import pandas as pd
|
|
|
|
import quapy as qp
|
|
from quapy.model_selection import GridSearchQ
|
|
from quapy.protocol import UPP
|
|
from commons import METHODS, new_method, show_results
|
|
from new_table import LatexTable
|
|
|
|
|
|
SEED = 1
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print(qp.datasets.UCI_MULTICLASS_DATASETS)
|
|
table = LatexTable()
|
|
for optim in ['mae']:
|
|
result_dir = f'results/ucimulti/{optim}'
|
|
|
|
for method in METHODS:
|
|
print()
|
|
global_result_path = f'{result_dir}/{method}'
|
|
print(f'Method\tDataset\tMAE\tMRAE\tKLD')
|
|
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS:
|
|
# print(dataset)
|
|
local_result_path = global_result_path + '_' + dataset
|
|
if os.path.exists(local_result_path + '.dataframe'):
|
|
report = pd.read_csv(local_result_path+'.dataframe')
|
|
print(f'{method}\t{dataset}\t{report["mae"].mean():.5f}')
|
|
table.add(benchmark=dataset, method=method, v=report["mae"].values)
|
|
else:
|
|
print(dataset, 'not found')
|
|
table.latexPDF(f'./tables/{optim}.pdf', landscape=False)
|
|
|