QuaPy/quapy/tests/test_methods.py

93 lines
3.8 KiB
Python

import itertools
import unittest
from sklearn.linear_model import LogisticRegression
import quapy as qp
from quapy.method.aggregative import ACC
from quapy.method.meta import Ensemble
from quapy.method import AGGREGATIVE_METHODS, BINARY_METHODS, NON_AGGREGATIVE_METHODS
from quapy.functional import check_prevalence_vector
class TestMethods(unittest.TestCase):
tiny_dataset_multiclass = qp.datasets.fetch_UCIMulticlassDataset('academic-success').reduce(n_test=10)
tiny_dataset_binary = qp.datasets.fetch_UCIBinaryDataset('ionosphere').reduce(n_test=10)
datasets = [tiny_dataset_binary, tiny_dataset_multiclass]
def test_aggregative(self):
for dataset in TestMethods.datasets:
learner = LogisticRegression()
learner.fit(*dataset.training.Xy)
for model in AGGREGATIVE_METHODS:
if not dataset.binary and model in BINARY_METHODS:
print(f'skipping the test of binary model {model.__name__} on multiclass dataset {dataset.name}')
continue
q = model(learner)
print('testing', q)
q.fit(dataset.training, fit_classifier=False)
estim_prevalences = q.quantify(dataset.test.X)
self.assertTrue(check_prevalence_vector(estim_prevalences))
def test_non_aggregative(self):
for dataset in TestMethods.datasets:
for model in NON_AGGREGATIVE_METHODS:
if not dataset.binary and model in BINARY_METHODS:
print(f'skipping the test of binary model {model.__name__} on multiclass dataset {dataset.name}')
continue
q = model()
print(f'testing {q} on dataset {dataset.name}')
q.fit(dataset.training)
estim_prevalences = q.quantify(dataset.test.X)
self.assertTrue(check_prevalence_vector(estim_prevalences))
def test_ensembles(self):
qp.environ['SAMPLE_SIZE'] = 10
base_quantifier = ACC(LogisticRegression())
for dataset, policy in itertools.product(TestMethods.datasets, Ensemble.VALID_POLICIES):
if not dataset.binary and policy == 'ds':
print(f'skipping the test of binary policy ds on non-binary dataset {dataset}')
continue
print(f'testing {base_quantifier} on dataset {dataset.name} with {policy=}')
ensemble = Ensemble(quantifier=base_quantifier, size=3, policy=policy, n_jobs=-1)
ensemble.fit(dataset.training)
estim_prevalences = ensemble.quantify(dataset.test.instances)
self.assertTrue(check_prevalence_vector(estim_prevalences))
def test_quanet(self):
try:
import quapy.classification.neural
except ModuleNotFoundError:
print('the torch package is not installed; skipping unit test for QuaNet')
return
qp.environ['SAMPLE_SIZE'] = 10
# load the kindle dataset as text, and convert words to numerical indexes
dataset = qp.datasets.fetch_reviews('kindle', pickle=True).reduce()
qp.data.preprocessing.index(dataset, min_df=5, inplace=True)
from quapy.classification.neural import CNNnet
cnn = CNNnet(dataset.vocabulary_size, dataset.n_classes)
from quapy.classification.neural import NeuralClassifierTrainer
learner = NeuralClassifierTrainer(cnn, device='cpu')
from quapy.method.meta import QuaNet
model = QuaNet(learner, device='cpu', n_epochs=2, tr_iter_per_poch=10, va_iter_per_poch=10, patience=2)
model.fit(dataset.training)
estim_prevalences = model.quantify(dataset.test.instances)
self.assertTrue(check_prevalence_vector(estim_prevalences))
if __name__ == '__main__':
unittest.main()