80 lines
2.7 KiB
Python
80 lines
2.7 KiB
Python
"""
|
|
Utility functions for `Bayesian quantification <https://arxiv.org/abs/2302.09159>`_ methods.
|
|
"""
|
|
import numpy as np
|
|
|
|
try:
|
|
import jax
|
|
import jax.numpy as jnp
|
|
import numpyro
|
|
import numpyro.distributions as dist
|
|
|
|
DEPENDENCIES_INSTALLED = True
|
|
except ImportError:
|
|
jax = None
|
|
jnp = None
|
|
numpyro = None
|
|
dist = None
|
|
|
|
DEPENDENCIES_INSTALLED = False
|
|
|
|
|
|
P_TEST_Y: str = "P_test(Y)"
|
|
P_TEST_C: str = "P_test(C)"
|
|
P_C_COND_Y: str = "P(C|Y)"
|
|
|
|
|
|
def model(n_c_unlabeled: np.ndarray, n_y_and_c_labeled: np.ndarray) -> None:
|
|
"""
|
|
Defines a probabilistic model in `NumPyro <https://num.pyro.ai/>`_.
|
|
|
|
:param n_c_unlabeled: a `np.ndarray` of shape `(n_predicted_classes,)`
|
|
with entry `c` being the number of instances predicted as class `c`.
|
|
:param n_y_and_c_labeled: a `np.ndarray` of shape `(n_classes, n_predicted_classes)`
|
|
with entry `(y, c)` being the number of instances labeled as class `y` and predicted as class `c`.
|
|
"""
|
|
n_y_labeled = n_y_and_c_labeled.sum(axis=1)
|
|
|
|
K = len(n_c_unlabeled)
|
|
L = len(n_y_labeled)
|
|
|
|
pi_ = numpyro.sample(P_TEST_Y, dist.Dirichlet(jnp.ones(L)))
|
|
p_c_cond_y = numpyro.sample(P_C_COND_Y, dist.Dirichlet(jnp.ones(K).repeat(L).reshape(L, K)))
|
|
|
|
with numpyro.plate('plate', L):
|
|
numpyro.sample('F_yc', dist.Multinomial(n_y_labeled, p_c_cond_y), obs=n_y_and_c_labeled)
|
|
|
|
p_c = numpyro.deterministic(P_TEST_C, jnp.einsum("yc,y->c", p_c_cond_y, pi_))
|
|
numpyro.sample('N_c', dist.Multinomial(jnp.sum(n_c_unlabeled), p_c), obs=n_c_unlabeled)
|
|
|
|
|
|
def sample_posterior(
|
|
n_c_unlabeled: np.ndarray,
|
|
n_y_and_c_labeled: np.ndarray,
|
|
num_warmup: int,
|
|
num_samples: int,
|
|
seed: int = 0,
|
|
) -> dict:
|
|
"""
|
|
Samples from the Bayesian quantification model in NumPyro using the
|
|
`NUTS <https://arxiv.org/abs/1111.4246>`_ sampler.
|
|
|
|
:param n_c_unlabeled: a `np.ndarray` of shape `(n_predicted_classes,)`
|
|
with entry `c` being the number of instances predicted as class `c`.
|
|
:param n_y_and_c_labeled: a `np.ndarray` of shape `(n_classes, n_predicted_classes)`
|
|
with entry `(y, c)` being the number of instances labeled as class `y` and predicted as class `c`.
|
|
:param num_warmup: the number of warmup steps.
|
|
:param num_samples: the number of samples to draw.
|
|
:seed: the random seed.
|
|
:return: a `dict` with the samples. The keys are the names of the latent variables.
|
|
"""
|
|
mcmc = numpyro.infer.MCMC(
|
|
numpyro.infer.NUTS(model),
|
|
num_warmup=num_warmup,
|
|
num_samples=num_samples,
|
|
progress_bar=False
|
|
)
|
|
rng_key = jax.random.PRNGKey(seed)
|
|
mcmc.run(rng_key, n_c_unlabeled=n_c_unlabeled, n_y_and_c_labeled=n_y_and_c_labeled)
|
|
return mcmc.get_samples()
|