QuaPy/quapy/method/_kdey.py

358 lines
17 KiB
Python

from typing import Union
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.neighbors import KernelDensity
import quapy as qp
from quapy.data import LabelledCollection
from quapy.method.aggregative import AggregativeSoftQuantifier
import quapy.functional as F
from sklearn.metrics.pairwise import rbf_kernel
class KDEBase:
"""
Common ancestor for KDE-based methods. Implements some common routines.
"""
BANDWIDTH_METHOD = ['scott', 'silverman']
@classmethod
def _check_bandwidth(cls, bandwidth):
"""
Checks that the bandwidth parameter is correct
:param bandwidth: either a string (see BANDWIDTH_METHOD) or a float
:return: the bandwidth if the check is passed, or raises an exception for invalid values
"""
assert bandwidth in KDEBase.BANDWIDTH_METHOD or isinstance(bandwidth, float), \
f'invalid bandwidth, valid ones are {KDEBase.BANDWIDTH_METHOD} or float values'
if isinstance(bandwidth, float):
assert 0 < bandwidth < 1, \
"the bandwith for KDEy should be in (0,1), since this method models the unit simplex"
return bandwidth
def get_kde_function(self, X, bandwidth):
"""
Wraps the KDE function from scikit-learn.
:param X: data for which the density function is to be estimated
:param bandwidth: the bandwidth of the kernel
:return: a scikit-learn's KernelDensity object
"""
return KernelDensity(bandwidth=bandwidth).fit(X)
def pdf(self, kde, X):
"""
Wraps the density evalution of scikit-learn's KDE. Scikit-learn returns log-scores (s), so this
function returns :math:`e^{s}`
:param kde: a previously fit KDE function
:param X: the data for which the density is to be estimated
:return: np.ndarray with the densities
"""
return np.exp(kde.score_samples(X))
def get_mixture_components(self, X, y, classes, bandwidth):
"""
Returns an array containing the mixture components, i.e., the KDE functions for each class.
:param X: the data containing the covariates
:param y: the class labels
:param n_classes: integer, the number of classes
:param bandwidth: float, the bandwidth of the kernel
:return: a list of KernelDensity objects, each fitted with the corresponding class-specific covariates
"""
class_cond_X = []
for cat in classes:
selX = X[y==cat]
if selX.size==0:
selX = [F.uniform_prevalence(len(classes))]
class_cond_X.append(selX)
return [self.get_kde_function(X_cond_yi, bandwidth) for X_cond_yi in class_cond_X]
class KDEyML(AggregativeSoftQuantifier, KDEBase):
"""
Kernel Density Estimation model for quantification (KDEy) relying on the Kullback-Leibler divergence (KLD) as
the divergence measure to be minimized. This method was first proposed in the paper
`Kernel Density Estimation for Multiclass Quantification <https://arxiv.org/abs/2401.00490>`_, in which
the authors show that minimizing the distribution mathing criterion for KLD is akin to performing
maximum likelihood (ML).
The distribution matching optimization problem comes down to solving:
:math:`\\hat{\\alpha} = \\arg\\min_{\\alpha\\in\\Delta^{n-1}} \\mathcal{D}(\\boldsymbol{p}_{\\alpha}||q_{\\widetilde{U}})`
where :math:`p_{\\alpha}` is the mixture of class-specific KDEs with mixture parameter (hence class prevalence)
:math:`\\alpha` defined by
:math:`\\boldsymbol{p}_{\\alpha}(\\widetilde{x}) = \\sum_{i=1}^n \\alpha_i p_{\\widetilde{L}_i}(\\widetilde{x})`
where :math:`p_X(\\boldsymbol{x}) = \\frac{1}{|X|} \\sum_{x_i\\in X} K\\left(\\frac{x-x_i}{h}\\right)` is the
KDE function that uses the datapoints in X as the kernel centers.
In KDEy-ML, the divergence is taken to be the Kullback-Leibler Divergence. This is equivalent to solving:
:math:`\\hat{\\alpha} = \\arg\\min_{\\alpha\\in\\Delta^{n-1}} -
\\mathbb{E}_{q_{\\widetilde{U}}} \\left[ \\log \\boldsymbol{p}_{\\alpha}(\\widetilde{x}) \\right]`
which corresponds to the maximum likelihood estimate.
:param classifier: a sklearn's Estimator that generates a binary classifier.
:param val_split: specifies the data used for generating classifier predictions. This specification
can be made as float in (0, 1) indicating the proportion of stratified held-out validation set to
be extracted from the training set; or as an integer (default 5), indicating that the predictions
are to be generated in a `k`-fold cross-validation manner (with this integer indicating the value
for `k`); or as a collection defining the specific set of data to use for validation.
Alternatively, this set can be specified at fit time by indicating the exact set of data
on which the predictions are to be generated.
:param bandwidth: float, the bandwidth of the Kernel
:param random_state: a seed to be set before fitting any base quantifier (default None)
"""
def __init__(self, classifier: BaseEstimator=None, val_split=5, bandwidth=0.1, random_state=None):
self.classifier = qp._get_classifier(classifier)
self.val_split = val_split
self.bandwidth = KDEBase._check_bandwidth(bandwidth)
self.random_state=random_state
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
self.mix_densities = self.get_mixture_components(*classif_predictions.Xy, data.classes_, self.bandwidth)
return self
def aggregate(self, posteriors: np.ndarray):
"""
Searches for the mixture model parameter (the sought prevalence values) that maximizes the likelihood
of the data (i.e., that minimizes the negative log-likelihood)
:param posteriors: instances in the sample converted into posterior probabilities
:return: a vector of class prevalence estimates
"""
with qp.util.temp_seed(self.random_state):
epsilon = 1e-10
n_classes = len(self.mix_densities)
test_densities = [self.pdf(kde_i, posteriors) for kde_i in self.mix_densities]
def neg_loglikelihood(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip (prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
return -np.sum(test_loglikelihood)
return F.optim_minimize(neg_loglikelihood, n_classes)
class KDEyHD(AggregativeSoftQuantifier, KDEBase):
"""
Kernel Density Estimation model for quantification (KDEy) relying on the squared Hellinger Disntace (HD) as
the divergence measure to be minimized. This method was first proposed in the paper
`Kernel Density Estimation for Multiclass Quantification <https://arxiv.org/abs/2401.00490>`_, in which
the authors proposed a Monte Carlo approach for minimizing the divergence.
The distribution matching optimization problem comes down to solving:
:math:`\\hat{\\alpha} = \\arg\\min_{\\alpha\\in\\Delta^{n-1}} \\mathcal{D}(\\boldsymbol{p}_{\\alpha}||q_{\\widetilde{U}})`
where :math:`p_{\\alpha}` is the mixture of class-specific KDEs with mixture parameter (hence class prevalence)
:math:`\\alpha` defined by
:math:`\\boldsymbol{p}_{\\alpha}(\\widetilde{x}) = \\sum_{i=1}^n \\alpha_i p_{\\widetilde{L}_i}(\\widetilde{x})`
where :math:`p_X(\\boldsymbol{x}) = \\frac{1}{|X|} \\sum_{x_i\\in X} K\\left(\\frac{x-x_i}{h}\\right)` is the
KDE function that uses the datapoints in X as the kernel centers.
In KDEy-HD, the divergence is taken to be the squared Hellinger Distance, an f-divergence with corresponding
f-generator function given by:
:math:`f(u)=(\\sqrt{u}-1)^2`
The authors proposed a Monte Carlo solution that relies on importance sampling:
:math:`\\hat{D}_f(p||q)= \\frac{1}{t} \\sum_{i=1}^t f\\left(\\frac{p(x_i)}{q(x_i)}\\right) \\frac{q(x_i)}{r(x_i)}`
where the datapoints (trials) :math:`x_1,\\ldots,x_t\\sim_{\\mathrm{iid}} r` with :math:`r` the
uniform distribution.
:param classifier: a sklearn's Estimator that generates a binary classifier.
:param val_split: specifies the data used for generating classifier predictions. This specification
can be made as float in (0, 1) indicating the proportion of stratified held-out validation set to
be extracted from the training set; or as an integer (default 5), indicating that the predictions
are to be generated in a `k`-fold cross-validation manner (with this integer indicating the value
for `k`); or as a collection defining the specific set of data to use for validation.
Alternatively, this set can be specified at fit time by indicating the exact set of data
on which the predictions are to be generated.
:param bandwidth: float, the bandwidth of the Kernel
:param random_state: a seed to be set before fitting any base quantifier (default None)
:param montecarlo_trials: number of Monte Carlo trials (default 10000)
"""
def __init__(self, classifier: BaseEstimator=None, val_split=5, divergence: str='HD',
bandwidth=0.1, random_state=None, montecarlo_trials=10000):
self.classifier = qp._get_classifier(classifier)
self.val_split = val_split
self.divergence = divergence
self.bandwidth = KDEBase._check_bandwidth(bandwidth)
self.random_state=random_state
self.montecarlo_trials = montecarlo_trials
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
self.mix_densities = self.get_mixture_components(*classif_predictions.Xy, data.classes_, self.bandwidth)
N = self.montecarlo_trials
rs = self.random_state
n = data.n_classes
self.reference_samples = np.vstack([kde_i.sample(N//n, random_state=rs) for kde_i in self.mix_densities])
self.reference_classwise_densities = np.asarray([self.pdf(kde_j, self.reference_samples) for kde_j in self.mix_densities])
self.reference_density = np.mean(self.reference_classwise_densities, axis=0) # equiv. to (uniform @ self.reference_classwise_densities)
return self
def aggregate(self, posteriors: np.ndarray):
# we retain all n*N examples (sampled from a mixture with uniform parameter), and then
# apply importance sampling (IS). In this version we compute D(p_alpha||q) with IS
n_classes = len(self.mix_densities)
test_kde = self.get_kde_function(posteriors, self.bandwidth)
test_densities = self.pdf(test_kde, self.reference_samples)
def f_squared_hellinger(u):
return (np.sqrt(u)-1)**2
# todo: this will fail when self.divergence is a callable, and is not the right place to do it anyway
if self.divergence.lower() == 'hd':
f = f_squared_hellinger
else:
raise ValueError('only squared HD is currently implemented')
epsilon = 1e-10
qs = test_densities + epsilon
rs = self.reference_density + epsilon
iw = qs/rs #importance weights
p_class = self.reference_classwise_densities + epsilon
fracs = p_class/qs
def divergence(prev):
# ps / qs = (prev @ p_class) / qs = prev @ (p_class / qs) = prev @ fracs
ps_div_qs = prev @ fracs
return np.mean( f(ps_div_qs) * iw )
return F.optim_minimize(divergence, n_classes)
class KDEyCS(AggregativeSoftQuantifier):
"""
Kernel Density Estimation model for quantification (KDEy) relying on the Cauchy-Schwarz divergence (CS) as
the divergence measure to be minimized. This method was first proposed in the paper
`Kernel Density Estimation for Multiclass Quantification <https://arxiv.org/abs/2401.00490>`_, in which
the authors proposed a Monte Carlo approach for minimizing the divergence.
The distribution matching optimization problem comes down to solving:
:math:`\\hat{\\alpha} = \\arg\\min_{\\alpha\\in\\Delta^{n-1}} \\mathcal{D}(\\boldsymbol{p}_{\\alpha}||q_{\\widetilde{U}})`
where :math:`p_{\\alpha}` is the mixture of class-specific KDEs with mixture parameter (hence class prevalence)
:math:`\\alpha` defined by
:math:`\\boldsymbol{p}_{\\alpha}(\\widetilde{x}) = \\sum_{i=1}^n \\alpha_i p_{\\widetilde{L}_i}(\\widetilde{x})`
where :math:`p_X(\\boldsymbol{x}) = \\frac{1}{|X|} \\sum_{x_i\\in X} K\\left(\\frac{x-x_i}{h}\\right)` is the
KDE function that uses the datapoints in X as the kernel centers.
In KDEy-CS, the divergence is taken to be the Cauchy-Schwarz divergence given by:
:math:`\\mathcal{D}_{\\mathrm{CS}}(p||q)=-\\log\\left(\\frac{\\int p(x)q(x)dx}{\\sqrt{\\int p(x)^2dx \\int q(x)^2dx}}\\right)`
The authors showed that this distribution matching admits a closed-form solution
:param classifier: a sklearn's Estimator that generates a binary classifier.
:param val_split: specifies the data used for generating classifier predictions. This specification
can be made as float in (0, 1) indicating the proportion of stratified held-out validation set to
be extracted from the training set; or as an integer (default 5), indicating that the predictions
are to be generated in a `k`-fold cross-validation manner (with this integer indicating the value
for `k`); or as a collection defining the specific set of data to use for validation.
Alternatively, this set can be specified at fit time by indicating the exact set of data
on which the predictions are to be generated.
:param bandwidth: float, the bandwidth of the Kernel
"""
def __init__(self, classifier: BaseEstimator=None, val_split=5, bandwidth=0.1):
self.classifier = qp._get_classifier(classifier)
self.val_split = val_split
self.bandwidth = KDEBase._check_bandwidth(bandwidth)
def gram_matrix_mix_sum(self, X, Y=None):
# this adapts the output of the rbf_kernel function (pairwise evaluations of Gaussian kernels k(x,y))
# to contain pairwise evaluations of N(x|mu,Sigma1+Sigma2) with mu=y and Sigma1 and Sigma2 are
# two "scalar matrices" (h^2)*I each, so Sigma1+Sigma2 has scalar 2(h^2) (h is the bandwidth)
h = self.bandwidth
variance = 2 * (h**2)
nD = X.shape[1]
gamma = 1/(2*variance)
norm_factor = 1/np.sqrt(((2*np.pi)**nD) * (variance**(nD)))
gram = norm_factor * rbf_kernel(X, Y, gamma=gamma)
return gram.sum()
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
P, y = classif_predictions.Xy
n = data.n_classes
assert all(sorted(np.unique(y)) == np.arange(n)), \
'label name gaps not allowed in current implementation'
# counts_inv keeps track of the relative weight of each datapoint within its class
# (i.e., the weight in its KDE model)
counts_inv = 1 / (data.counts())
# tr_tr_sums corresponds to symbol \overline{B} in the paper
tr_tr_sums = np.zeros(shape=(n,n), dtype=float)
for i in range(n):
for j in range(n):
if i > j:
tr_tr_sums[i,j] = tr_tr_sums[j,i]
else:
block = self.gram_matrix_mix_sum(P[y == i], P[y == j] if i!=j else None)
tr_tr_sums[i, j] = block
# keep track of these data structures for the test phase
self.Ptr = P
self.ytr = y
self.tr_tr_sums = tr_tr_sums
self.counts_inv = counts_inv
return self
def aggregate(self, posteriors: np.ndarray):
Ptr = self.Ptr
Pte = posteriors
y = self.ytr
tr_tr_sums = self.tr_tr_sums
M, nD = Pte.shape
Minv = (1/M) # t in the paper
n = Ptr.shape[1]
# becomes a constant that does not affect the optimization, no need to compute it
# partC = 0.5*np.log(self.gram_matrix_mix_sum(Pte) * Kinv * Kinv)
# tr_te_sums corresponds to \overline{a}*(1/Li)*(1/M) in the paper (note the constants
# are already aggregated to tr_te_sums, so these multiplications are not carried out
# at each iteration of the optimization phase)
tr_te_sums = np.zeros(shape=n, dtype=float)
for i in range(n):
tr_te_sums[i] = self.gram_matrix_mix_sum(Ptr[y==i], Pte)
def divergence(alpha):
# called \overline{r} in the paper
alpha_ratio = alpha * self.counts_inv
# recall that tr_te_sums already accounts for the constant terms (1/Li)*(1/M)
partA = -np.log((alpha_ratio @ tr_te_sums) * Minv)
partB = 0.5 * np.log(alpha_ratio @ tr_tr_sums @ alpha_ratio)
return partA + partB #+ partC
return F.optim_minimize(divergence, n)