QuaPy/docs/build/html/_modules/quapy/classification/methods.html

220 lines
16 KiB
HTML

<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="../../../">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>quapy.classification.methods &mdash; QuaPy: A Python-based open-source framework for quantification 0.1.8 documentation</title>
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css?v=92fd9be5" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/theme.css?v=19f00094" />
<!--[if lt IE 9]>
<script src="../../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script src="../../../_static/jquery.js?v=5d32c60e"></script>
<script src="../../../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="../../../_static/documentation_options.js?v=22607128"></script>
<script src="../../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home">
QuaPy: A Python-based open-source framework for quantification
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../modules.html">quapy</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">QuaPy: A Python-based open-source framework for quantification</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item"><a href="../../index.html">Module code</a></li>
<li class="breadcrumb-item active">quapy.classification.methods</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for quapy.classification.methods</h1><div class="highlight"><pre>
<span></span><span class="kn">from</span> <span class="nn">sklearn.base</span> <span class="kn">import</span> <span class="n">BaseEstimator</span>
<span class="kn">from</span> <span class="nn">sklearn.decomposition</span> <span class="kn">import</span> <span class="n">TruncatedSVD</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<div class="viewcode-block" id="LowRankLogisticRegression">
<a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression">[docs]</a>
<span class="k">class</span> <span class="nc">LowRankLogisticRegression</span><span class="p">(</span><span class="n">BaseEstimator</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> An example of a classification method (i.e., an object that implements `fit`, `predict`, and `predict_proba`)</span>
<span class="sd"> that also generates embedded inputs (i.e., that implements `transform`), as those required for</span>
<span class="sd"> :class:`quapy.method.neural.QuaNet`. This is a mock method to allow for easily instantiating</span>
<span class="sd"> :class:`quapy.method.neural.QuaNet` on array-like real-valued instances.</span>
<span class="sd"> The transformation consists of applying :class:`sklearn.decomposition.TruncatedSVD`</span>
<span class="sd"> while classification is performed using :class:`sklearn.linear_model.LogisticRegression` on the low-rank space.</span>
<span class="sd"> :param n_components: the number of principal components to retain</span>
<span class="sd"> :param kwargs: parameters for the</span>
<span class="sd"> `Logistic Regression &lt;https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html&gt;`__ classifier</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_components</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">n_components</span> <span class="o">=</span> <span class="n">n_components</span>
<span class="bp">self</span><span class="o">.</span><span class="n">classifier</span> <span class="o">=</span> <span class="n">LogisticRegression</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<div class="viewcode-block" id="LowRankLogisticRegression.get_params">
<a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.get_params">[docs]</a>
<span class="k">def</span> <span class="nf">get_params</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Get hyper-parameters for this estimator.</span>
<span class="sd"> :return: a dictionary with parameter names mapped to their values</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">params</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;n_components&#39;</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_components</span><span class="p">}</span>
<span class="n">params</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">get_params</span><span class="p">())</span>
<span class="k">return</span> <span class="n">params</span></div>
<div class="viewcode-block" id="LowRankLogisticRegression.set_params">
<a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.set_params">[docs]</a>
<span class="k">def</span> <span class="nf">set_params</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">params</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Set the parameters of this estimator.</span>
<span class="sd"> :param parameters: a `**kwargs` dictionary with the estimator parameters for</span>
<span class="sd"> `Logistic Regression &lt;https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html&gt;`__</span>
<span class="sd"> and eventually also `n_components` for `TruncatedSVD`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">params_</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">params</span><span class="p">)</span>
<span class="k">if</span> <span class="s1">&#39;n_components&#39;</span> <span class="ow">in</span> <span class="n">params_</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">n_components</span> <span class="o">=</span> <span class="n">params_</span><span class="p">[</span><span class="s1">&#39;n_components&#39;</span><span class="p">]</span>
<span class="k">del</span> <span class="n">params_</span><span class="p">[</span><span class="s1">&#39;n_components&#39;</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">set_params</span><span class="p">(</span><span class="o">**</span><span class="n">params_</span><span class="p">)</span></div>
<div class="viewcode-block" id="LowRankLogisticRegression.fit">
<a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.fit">[docs]</a>
<span class="k">def</span> <span class="nf">fit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Fit the model according to the given training data. The fit consists of</span>
<span class="sd"> fitting `TruncatedSVD` and then `LogisticRegression` on the low-rank representation.</span>
<span class="sd"> :param X: array-like of shape `(n_samples, n_features)` with the instances</span>
<span class="sd"> :param y: array-like of shape `(n_samples, n_classes)` with the class labels</span>
<span class="sd"> :return: `self`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">nF</span> <span class="o">=</span> <span class="n">X</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pca</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">nF</span> <span class="o">&gt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_components</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pca</span> <span class="o">=</span> <span class="n">TruncatedSVD</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">n_components</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="n">X</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">classes_</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">classes_</span>
<span class="k">return</span> <span class="bp">self</span></div>
<div class="viewcode-block" id="LowRankLogisticRegression.predict">
<a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.predict">[docs]</a>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Predicts labels for the instances `X` embedded into the low-rank space.</span>
<span class="sd"> :param X: array-like of shape `(n_samples, n_features)` instances to classify</span>
<span class="sd"> :return: a `numpy` array of length `n` containing the label predictions, where `n` is the number of</span>
<span class="sd"> instances in `X`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">X</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X</span><span class="p">)</span></div>
<div class="viewcode-block" id="LowRankLogisticRegression.predict_proba">
<a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.predict_proba">[docs]</a>
<span class="k">def</span> <span class="nf">predict_proba</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Predicts posterior probabilities for the instances `X` embedded into the low-rank space.</span>
<span class="sd"> :param X: array-like of shape `(n_samples, n_features)` instances to classify</span>
<span class="sd"> :return: array-like of shape `(n_samples, n_classes)` with the posterior probabilities</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">X</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">predict_proba</span><span class="p">(</span><span class="n">X</span><span class="p">)</span></div>
<div class="viewcode-block" id="LowRankLogisticRegression.transform">
<a class="viewcode-back" href="../../../quapy.classification.html#quapy.classification.methods.LowRankLogisticRegression.transform">[docs]</a>
<span class="k">def</span> <span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the low-rank approximation of `X` with `n_components` dimensions, or `X` unaltered if</span>
<span class="sd"> `n_components` &gt;= `X.shape[1]`.</span>
<span class="sd"> </span>
<span class="sd"> :param X: array-like of shape `(n_samples, n_features)` instances to embed</span>
<span class="sd"> :return: array-like of shape `(n_samples, n_components)` with the embedded instances</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">pca</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">X</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">pca</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X</span><span class="p">)</span></div>
</div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2024, Alejandro Moreo.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>